BS222 Practical 3. Autumn 2018.

Back to the genes. Gene Ontology (GO) analysis

Vladimir Teif (vteif@essex.ac.uk)

In this practical session we will continue the p53 binding story started previously, integrating the data that we have obtained with respect to p53 binding (ChIP-seq) and gene expression (RNA-seq).

Summary of the previous practical. Our previous practical was based on the data reported in the study entitled "Integrative genomic analysis reveals widespread enhancer regulation by p53 in response to DNA damage" (Younger et al. (2015) Nucleic Acids Res. 43 (9): 4447-4462). The full text of this article is available at <u>http://nar.oxfordjournals.org/content/43/9/4447.long</u>. This paper is about chromatin binding of the tumour suppressor protein p53. The authors have determined genome-wide p53 binding profiles in human and mouse cells. Their main finding was that p53 binding occurs predominantly within transcriptional enhancers. You have previously mapped the p53 ChIP-seq data, called peaks to detect p53 binding sites, and checked the overlapping of p53 binding sites with promoters and enhancers. Now we will perform an integrative analysis combing the p53 protein binding data with gene expression changes for the same mouse cells treated with a drugs doxorubicin.

The data generated by the authors of the article that we use in our practicals are available at the following GEO accession number: <u>https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55727</u>.

Plan for this practical:

- 1 Understand results of differential gene expression analysis based on RNA-seq
- 2 Determine whether p53 binding at gene promoters correlates with gene expression
- 3 Perform Gene Ontology (GO) analysis using DAVID
- 4 Perform Gene Ontology (GO) analysis using GOrilla
- 5 Perform Gene Ontology (GO) analysis using EnrichR

Task 1. Understand results of differential gene expression analysis based on RNA-seq.

Some people say that 90% of bioinformatics is data conversion from one format to another. Bioinformaticians do not agree with this and cannot tell you what constitutes the remaining 10% O

In this case you are lucky, because I have already processed RNA-seq data from this paper for you, and it is already in a human-readable format, very similar to the BED file format in which we have previously obtained p53 binding peaks. Here is how the differential gene expression data look like:

GeneID	Base mean	log2(FC)	StdErr	Wald-Stats	P-value	P-adj
Ccng1	10253.9565478971	2.1733415985728	0.0496837029960621	43.7435510542573	0	0
Plau	2868.70628875291	2.29644968758308	0.0591563933877861	38.8199745804182	0	0
Adamts5	2965.14805964652	-3.5324246968983	0.0745015980961711	-47.4140795253604	0	0
Nr4a1	1953.34530631308	3.1725957908854	0.0746751971051276	42.4852683872937	0	0
Ptx3	10991.9420032442	-2.54241242151884	0.0486014725308458	-52.3114278050991	0	0
Icam1	4478.63735905254	2.23008961534929	0.0578959006213177	38.5189554254582	0	0
Notch3	2249.90055725676	2.73860762232716	0.0732767783235185	37.3734719918519	1.05419963864197e-305	1.6483164349909e-302
Epha2	2135.073342786	2.45779451307348	0.0672508448471497	36.5466711780298	2.01401713077518e-292	2.75542718704179e-289
Crip2	1442.08969261518	2.94651026539472	0.0842783818167692	34.9616378705605	8.61827045902016e-268	1.04807744637751e-264
Il6st	12913.6159391834	-1.45668667038069	0.042416124701033	-34.3427571624717	1.80658921536963e-258	1.97731189622206e-255
Mt2	2187.97154447509	-1.97523511200763	0.0620548411881086	-31.8304756597482	2.45248102528859e-222	2.44021862016215e-219
Mki67	8680.16437898843	-1.79983281997386	0.0568558109468329	-31.6560926667095	6.25200113502026e-220	5.70234603523307e-217
Ckap2	5255.93442864738	1.7628614755545	0.0558089037520847	31.5874592947663	5.48925058747985e-219	4.62152674461284e-216

As you can see, the first column gives us the name of the gene, the third column gives expression log2 fold change between two cell conditions, and the fifth column gives the P value. These are perhaps the most interesting columns from the point of view of what changes and how much is the change upon cell treatment.

Now let us look at the file containing p53 bound sites that we have created during the first ChIP-seq analysis practical:

chr8	13548925	13549101	+	1050.7	0.888	307	1160.7	3	386.91	0.00E+00	143.98	0.00E+00	0.58
chr12	111963380	111963556	+	1015.2	0.89	319	1121.5	2	560.76	0.00E+00	216.46	0.00E+00	0.55
chr7	139921178	139921354	+	810.2	0.91	292	895.1	5	179.01	0.00E+00	169.87	0.00E+00	0.6
chr8	12634989	12635165	+	654	0.934	157	722.5	1	722.52	0.00E+00	82.94	0.00E+00	1.11
chr4	128252925	128253101	+	600.8	0.864	186	663.7	4	165.92	0.00E+00	52.7	0.00E+00	0.93
chr1	156903370	156903546	+	561.7	0.908	263	620.6	5	124.11	0.00E+00	101.82	0.00E+00	0.65
chr10	90881469	90881645	+	537.8	0.808	241	594.1	2	297.05	0.00E+00	104.72	0.00E+00	0.71
chr7	87100003	87100179	+	525.3	0.969	150	580.4	2	290.18	0.00E+00	65.18	0.00E+00	1.21
chr17	29227791	29227967	+	500.5	0.877	261	552.9	4	138.23	0.00E+00	38.91	0.00E+00	0.65
chr8	23544523	23544699	+	473	0.866	187	522.5	3	174.18	0.00E+00	20.91	0.00E+00	0.89
chr5	140199090	140199266	+	459.7	0.863	266	507.8	4	126.95	0.00E+00	98.01	0.00E+00	0.62
chr10	117154716	117154892	+	449	0.894	234	496.1	4	124.01	0.00E+00	98.41	0.00E+00	0.71
chr1	54901247	54901423	+	444.6	0.914	246	491.2	4	122.79	0.00E+00	135.75	0.00E+00	0.67
chr8	64780293	64780469	+	437.5	0.923	226	483.3	2	241.66	0.00E+00	211.68	0.00E+00	0.73
chr15	85690303	85690479	+	428.6	0.895	231	473.5	0.5	947.02	0.00E+00	82.45	0.00E+00	0.71
chr9	117068448	117068624	+	423.3	0.659	221	467.6	9	51.96	0.00E+00	24.36	0.00E+00	0.74
chr3	32263187	32263363	+	419.7	0.925	231	463.7	4	115.93	0.00E+00	99.63	0.00E+00	0.7
chr8	23545199	23545375	+	419.7	0.745	247	463.7	5	92.74	0.00E+00	17.78	0.00E+00	0.66
chr10	117147028	117147204	+	418.8	0.832	241	462.7	2	231.36	0.00E+00	76.15	0.00E+00	0.67
chr2	167389561	167389737	+	407.3	0.911	198	450	3	149.99	0.00E+00	81.59	0.00E+00	0.84
chr4	149423131	149423307	+	407.3	0.801	236	450	2	224.99	0.00E+00	49.37	0.00E+00	0.69

In the BED file above, each line corresponds to one p53 peak determined in ChIP-seq. The first column gives the chromosome number, the second column – region start, the third column – region end, the fourth column – strand (all peaks are assumed to be on the plus strand, because the strand information actually disappears after we call a peak), the fourth column is the score of the peak (the higher the peak the bigger its score). These are all the columns that we will need.

It is easy to see that the RNA-seq data and ChIP-seq data are represented in quite different formats. For example, the RNA-seq data only contain the gene name, but do not contain the genomic coordinates of this gene. Since the mouse genome is pretty much annotated, it is possible to get genomic coordinates for each gene, but doing this manually would be too much work. We need to need to make some trick in order to add the genomic coordinates to the genes. But before we do this, let us ask ourselves a question: what is it that we want to learn from the combined analysis of RNA-seq and ChIP-seq? May be we have some hypothesis that we want to check?

For example, say, we have the following hypothesis. We guess that p53 binding at regulatory regions should affect the genes associated with those regulatory regions. What are the regulatory regions? Promoters and enhancers. Let us just take the promoters for simplicity. Promoters are the regulatory regions upstream of the gene. There is no consensus among scientists as to how large the promoters are. A good estimate for a promoter size is about 1-2 kb. We have previously used a BED file with coordinates of all mouse promoters, named "promoters mm9.bed":

chr4	131977322	131979322	-	GXT_12943606	AK049209	GXL_283229	Phactr4
chr4	42215999	42217999	-	GXT_12943623	AK047126	GXL_778728	Gm10931
chr7	109212607	109214607	-	GXT_12944438	AK078509	GXL_287330	Rnf121
chr14	5944054	5946054	-	GXT 12946537	AK084071	GXL 778563	Gm10021
chr17	95233138	95235138	-	GXT 12947170	AK082664	GXL 461852	Gm1976
chr17	95148281	95150281	-	GXT_12947186	AK080683	GXL_473176	Mett14
chr19	39536565	39538565	-	GXT_12947662	AK050051	GXL_171813	Cyp2c38
chr7	109207990	109209990	-	GXT 12949553	AK034806	GXL 287330	Rnf121
chr7	109212649	109214649	-	GXT 12949662	AK089714	GXL 287330	Rnf121
chrX	67694797	67696797	-	GXT 12950375	AK089806	GXL 216606	AK089806
chr17	95148211	95150211	-	GXT_12951740	AK043389	GXL 473176	Mettl4
chr17	53092628	53094628	-	GXT 12951756	AK040895	GXL 225725	Kcnh8
chr17	33391090	33393090	-	GXT 12951767	AK038946	GXL 660138	Zfp955a
chr17	6957390	6959390	-	GXT_12951785	AK035271	GXL_155066	Ezr
chr4	25541413	25543413	-	GXT_12953332	AK085009	GXL_282468	Fut9

This file contains almost 200,000 promoters in the mouse genome. Interestingly, the number of annotated genes in the mouse genome is just about 60,000. How is it possible, that there are more promoters than genes? For example, in the table above we can spot three instances of gene Rnf121, which has three different promoters. Indeed, many genes have several alternative transcripts, alternative transcription start sites, and each of these alternative transcription start sites has its own promoter. But the problem is that the file with the results of the differential gene expression quantifies gene expression per gene, not per gene transcript. There is an easy (and dirty) solution to remove some lines from the file promoters_mm9.bed which contain duplicated gene names. By doing so, we keep only one promoter per gene. It is easy to do this in Excel, so I have done it for you. The file promoters mm9 52k.bed contains one promoter per gene, in total about 52 thousand genes.

After I have added promoter coordinates to the RNA-seq differential expression file, the resulting file promoters and DEseq.bed looks like this:

chr4	42215999	42217999	Gm10931	Gm10931 0	NA	NA	NA	NA	NA
chr7	109212607	109214607	Rnf121	Rnf121 0	NA	NA	NA	NA	NA
chr14	5944054	5946054	Gm10021	Gm10021 0	NA	NA	NA	NA	NA
chr17	95148281	95150281	Mett14	Mettl4 0	NA	NA	NA	NA	NA

Here the first column is the chromosome number, the second column in region start, the third column is region end, then goes the gene name and its differential expression data (in this case of the four genes printed here the expression data is not available, but for most other genes these are available). We can notice that this resembles the BED format which we have seen a lot previously during the ChIP-seq practical. And we know how to find the intersection between two files in BED format. This is what we previously did for the intersection of p53 sites with different genomic features. Now we can intersect p53 sites with the promoters linked to their corresponding gene expression data from RNA-seq. You do not need to do this, because I have already done this for you. The results of this calculation are stored in a new file called peaks_intersect_DEseq.bed. This file is also situated in the folder /PracticalData on the Moodle in the section for Practical 3.

The file peaks_intersect_DEseq.bed finally contains all the information we need to integrate p53 binding ChIP-seq and gene expression RNA-seq data. As I said, I have already prepared this file for you, so that you focus on more interesting steps of the analysis. Now, here is what you have to do:

Task 2. Determine whether p53 binding at gene promoters correlates with gene expression

Copy file peaks intersect DEseq.bed from Moodle

(<u>https://moodle.essex.ac.uk/mod/folder/view.php?id=397737</u>) to your local computer, and then open it in Excel:

5	9 • 6	- -						ş	peaks_inter	sect_DEseq	- Microsoft Ex	ccel						100
1	File Hor	ne Insert	Page Layout	Formulas	Data Rev	iew View	Acrobat											2
ľ	Cut		libri -	11 - A	^ ≡ ≡	- 🗞 🧧	Wrap 1	Text	General			1	*		Σ AutoSum	· 🎢 🕅		
Pa	ste	at Painter B	<i>I</i> <u>U</u> - E	- 🄌 · ,	<u>A</u> · ≡ ≡	= it it	Merge	& Center *	9 - %	•.0 •.0	Conditional Formatting *	Format Cell as Table * Styles *	Insert Delete	Format	Clear *	Sort & Find & Filter * Select		
	Clipboard	F5	Font			Alignr	nent	5	Nur	nber 7		Styles	Cells		Ed	diting		
	AB10	• (f_x															
	A	В	С	D	E	F	G	н		J	К	L	M	N	0	Р	Q	R
1	chr15	85690303	85690440 +		428.6	0.895	231	473.5	0.	5 947.0	2 0.00E+00	82.45	0.00E+00	0.	71 chr15	85688440	85690440	Ttc38
2	chr15	85690303	85690479 +		428.6	0.895	231	473.5	0.	5 947.0	2 0.00E+00	82.45	0.00E+00	0.	71 chr15	85689175	85691175	Gtse1
3	chr8	23296397	23296573 +		348.7	0.89	208	385.3		7 55.0	4 0.00E+00	137.97	0.00E+00	0.	75 chr8	23295245	23297245	Ckap2
4	chr7	52721866	52722042 +		344.3	0.797	211	380.4		2 190.1	9 0.00E+00	61.7	0.00E+00	0.	74 chr7	52721178	52723178	Bax
5	chr1	1.38E+08	1.38E+08 +		322.1	0.85	210	355.9		1 355.8	7 0.00E+00	45.53	0.00E+00	0.	73 chr1	1.38E+08	1.38E+08	Phida3
6	chr7		16894165 +		249.4	0.819	182	275.5		3 91.8	3 0.00E+00	27.23	4.97E-288		76 chr7		16895932	DL - D

This picture shows only part of the Excel file. Here we can see the information about the peaks. If we scroll more to the right, we will see the second part of the same file:

2	9 • (* •	Ŧ						pe	aks_inte	ersect_DEs	seq - Micro	soft Exce	el								- 0
Fil	e Home	Insert	Page Layout	Formulas Da	ta Review	View	Acrobat														a 🕜 =
Ê			alibri -	11 - A A	= = _	æ.	Wrap Tex	t	General		•	-			i i		Σ Aut	oSum • A			
Past	e 🍼 Format		B I ∐ - □	· <u>.</u>	E 2 3	ir ir	📲 Merge &	Center +	9 - %	•	0 .00 Cond Form		Format s Table *	Cell Styles •	Insert Delet	e Format	2 Clea	Sort	& Find &		
	Clipboard		Font			Alignme	nt		Nu	mber		St	tyles		Cells			Editing			
	AB10	-	- fx																		
1	1	J	K	L	M	N	0	P		Q	R	S		т	U	V		W	Х	Y	Z
1	0.5	947.02	0.00E+00	82.45	0.00E+00	0.1	71 chr15	85688	8440 85	5690440	Ttc38		Tt	c38	0	NA		NA	NA	NA	NA
2	0.5	947.02	0.00E+00	82.45	0.00E+00	0.	71 chr15	85689	175 85	691175	Gtse1		Gt	tse1	0	NA		NA	NA	NA	NA
3	7	55.04	0.00E+00	137.97	0.00E+00	0.	75 chr8	23295	245 23	3297245	Ckap2		C	kap2	5255.934	1.76286	51476	0.055809	31.58746	*****	*****
4	2	190.19	0.00E+00	61.7	0.00E+00	0.	74 chr7	52721	178 52	2723178	Bax		Ba	ax	35.74425	1.58450	7423	0.343422	4.613877	3.95E-06	2.37E-05
5	1	355.87	0.00E+00	45.53	0.00E+00	0.	73 chr1	1.388	+08 1	.38E+08	Phlda3		PH	nIda3	982.9958	1.13934	7638	0.09778	11.65215	2.24E-31	6.62E-30
6	3	91.83	0.00E+00	27.23	4.97E-288	0.1	76 chr7	16893	932 16	5895932	Bbc3		Bb	bc3	67.78692	1.23086	0618	0.260172	4.730944	2.23E-06	1.39E-05
7	4	65.93	0.00E+00	72.89	0.00E+00	0	.8 chr12	1.02E	+08 1	.02E+08	90306170	003Rik	90	306170	0 0	NA		NA	NA	NA	NA

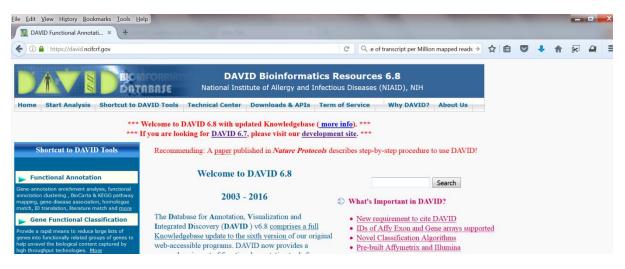
Let us focus on the quantitative characteristics of p53 binding to the promoter and changes of gene expression changes for the corresponding gene. The strength of p53 binding is characterised by the ChIP-seq peak height, which is given by the peak score in column "E". The change of gene expression is given by the log2 fold change in the column "V".

The simplest hypothesis that we can text now it this: whether the strength of p53 binding at the promoter is correlated to the change of gene expression? To test this hypothesis we need to calculate the correlation between columns "E" and "V". This is easy to do in Excel. Just select any empty cell, place there the cursor, and insert there the equation for the correlation between columns "E" and "V":

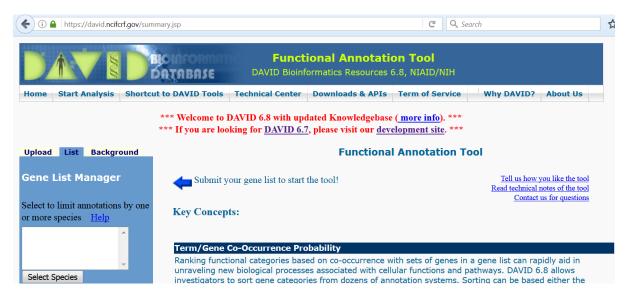
X	. . . C	* -				_		
F	ile Hom	e Insert	Page Layout	Formulas	Data Re	eview View	/ Acrobat	
ľ	Cut	*				= - »		
Pas	ste 🚽 Forma	t Painter B	ΙU·		<u>A</u> · 		📕 📲 Mer	ge &
	Clipboard	Esi	Fon	t	Es.	Alig	gnment	
	AB3	- (f_x	=CORRE	EL(E:E,V:V)			
	Y	Z	AA	AB	AC	AD	AE	
1	NA	NA						
2	NA	NA		Correlatio	n between	peak score	e and log2	fold
3	########	########		0.312581				
4	3.95E-06	2.37E-05						

In case if you are still wondering where to find the CORREL function in Excel, here it is:

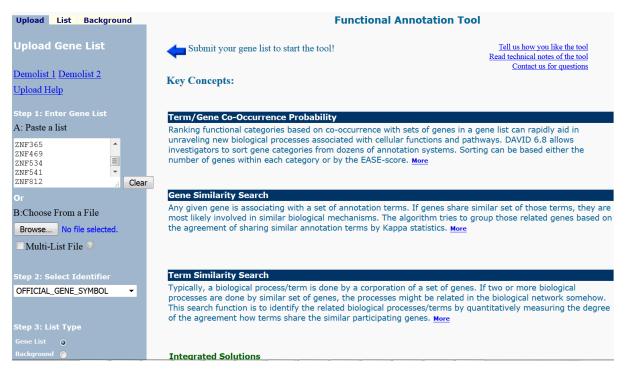
2	• • • •	* Ŧ									peaks_intersect_DEseq - Microsoft Excel
F	ile Hom	e Insert	Page Layout	Formulas	Data Re	eview Vi	iew	Acrobat			
f.	řΣ	Ŕ	ê î	A	i 🏚	θ	Í			_	efine Name - se in Formula - = Trace Precedents Show - Trace Dependents - - - - - - - - - -
Ins		m Recently Fi Used *	nancial Logical		te & Lookup ne ▼ Referenci			lore Na tions • Man	me "		reate from Selection
			7	on Library			ø	<u>S</u> tatistical	•		AVEDEV Formula Auc
	AB5	• (fs	r			101	<u>E</u> ngineering			AVERAGE
	Y	Z	AA	AB	AC	AD	Ê	<u>C</u> ube	•		AVERAGEA = AI AJ
1	NA	NA					í	Information	•		AVERAGEIF
2	NA	NA		Correlatio	n between	peak sco		<u>C</u> ompatibili	tv 🕨		AVERAGEIFS
3	########	########		0.312581					., .		BFTA.DIST
4	3.95E-06	2.37E-05									
5	2.24E-31	6.62E-30									BETA.INV
6	2.23E-06	1.39E-05									BINOM.DIST
7	NA	NA									BINOM.INV
8	NA	NA									CHISQ.DIST
9	########	########									CHISQ.DIST.RT
10	3.43E-63	2.61E-61									CHISQ.INV
11	1.18E-14	1.62E-13									CHISO.INV.RT
12	0.975088	0.988194									CHISO.TEST
13	5.04E-05	0.000251									
14	NA	NA									CONFIDENCE.NORM
15	1.03E-19	1.91E-18									CONFIDENCE.T
16	NA	NA									CORREL
17	NA	NA									COUNT
18	1.09E-09	9.90E-09									COUN CORREL(array1,array2)
19	NA	NA									COUN Returns the correlation coefficient between two data sets.
20	########	########								fr	Incort F
21	0.589717	0.75078									Press F1 for more help.

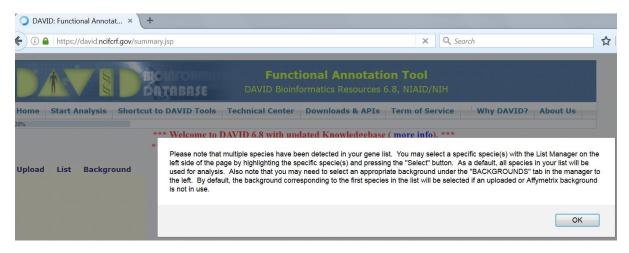

Which correlation did you get? What can we say about this correlation? Is it large, small, or moderate? Is it statistically significant? Did you expect it like this at all?

Task 3. Gene Ontology (GO) analysis with DAVID.


The first type of integrative analysis that I suggest you to try is the easiest to do and also quite a fun thing. Usually wet lab biologists love this type of analysis because it gives them an impression that they understood a lot about the system (in many cases this is an illusion, though). Let's just try it O

Let us perform GO analysis for genes which contain bound p53 at their promoters using software DAVID.


3.1. Please open any Internet browser and go to this web address: <u>https://david.ncifcrf.gov</u>:


3.2. Select "Functional annotation":

3.3. Select the "upload" link, then under "step 1" paste in the gene list manager your list of genes from the corresponding column in the file peaks_intersect_DEseq.bed opened in Excel. Under "step 2" select "official gene name", and under "step 3" select "gene list":

3.4. Under "Step 4" press "submit list". You will receive the following notification:

3.5. Click "OK", and then highlight "Mus Musculus" and press button "Select species":

♦ (i) ▲ https://david.ncifcrf.gov	ı/summary.jsp		E)	C Q david gei
	DATABASE		ional Annotati ormatics Resources	
Home Start Analysis Sh	ortcut to DAVID Tools	Technical Center	Downloads & APIs	Term of Service
Upload List Background Gene List Manager Select to limit annotations by or more species Help - Use All Species - Mus musculus(2383) Canis lupus familiaris(2234 Pan troglodytes(2216) + Select Species	*** If you are loo Annotati Current Gen Current Bac B Functional Gene_Onto B General_An E Literature (on Summary e List: List_1 kground: Mus mus Categories (3 selecte logy (3 selected) notations (0 selected) 0 selected) sisions (0 selected)	238 sculus Chea d)	

3.6. Then click "Functional annotation clustering":

281 0	luster(s)					1	Download File
	Annotation Cluster 1	Enrichment Score: 12.97	G				P_Value Benjamir
				_	1 0	207	4.4E-20 3.8E-18
		Mitochondrion	<u>RT</u>	-			
	-	<u>Transit peptide</u>	<u>RT</u>	-		111	4.6E-14 2.0E-12
	UP_SEQ_FEATURE	transit peptide:Mitochondrion	<u>RT</u>	-		98	6.1E-7 2.7E-3
	Annotation Cluster 2	Enrichment Score: 9.9	G		1 1	Count	P_Value Benjamir
	UP_KEYWORDS	Transcription	RT			309	2.4E-18 1.5E-16
	UP_KEYWORD\$	Transcription regulation	RT	-		299	9.2E-18 5.0E-16
	GOTERM_BP_DIRECT	transcription, DNA-templated	<u>RT</u>	_		311	4.2E-13 2.2E-9
	GOTERM_BP_DIRECT	regulation of transcription, DNA-templated	<u>RT</u>			344	1.8E-9 4.8E-6
	UP_KEYWORD\$	DNA-binding	<u>RT</u>	-		223	2.8E-6 4.2E-5
	GOTERM_MF_DIRECT	DNA binding	<u>RT</u>	-		265	4.6E-6 1.1E-3
	GOTERM_MF_DIRECT	transcription factor activity, sequence- specific DNA binding	<u>RT</u>	=		126	2.4E-3 1.8E-1
	Annotation Cluster 3	Enrichment Score: 9.61			11	Count	P_Value Benjami
	UP_KEYWORD\$	Metal-binding	RT			480	3.8E-14 1.8E-12
	GOTERM_MF_DIRECT	metal ion binding	<u>RT</u>			476	6.7E-10 3.6E-7

Understanding DAVID's output:

Curre Curre	ctional Annotation nt Gene List: demolist1 nt Background: Homo sapie AVID IDS	, /			mum number of rd per page	
B Opti	and the second		4	V 1000		
	Count Threshold 2	EASE Threshold 0.1	# of Records	Displayed 1000		
		e Sublist			Download File	
Subli	and a second sec	¢ Term		ines <u>Count</u>	The second secon	
	SP_PIR_KEYWORDS	signal	RI	>47	27.5% >3.0E-10	
	SP_PIR_KEYWORDS	alvcoprotein	RI	51	29.8% 4.9E-8	
	GOTERM_CC_ALL	extracellular region	RT	32	18.7% 1.1E-7	
	SP_PIR_KEYWORDS	alternative splicing	RI	49	28.7% 6.4E-6	
	SP_PIR_KEYWORDS	chromoprotein	<u>RT</u>	7	4.1% 1.1E-5	
	SP_PIR_KEYWORDS	direct protein sequencing	RI 🔤	33	19.3% 1.2E-5	
	SP_PIR_KEYWORDS	phosphorylation	RI	31	18.1% 1.6E-5	
	UP_SEQ_FEATURE	signal peptide	RI	47	27.5% 3.7E-5	
	SP_PIR_KEYWORDS	metalloprotein	RI 🗰	8	4.7% 4.7E-5	
	GOTERM_BP_ALL	response to chemical stimulus	RI 🚍	14	8.2% 6.1E-5	
	latabase/resource e tems orient	Enriched terms associated with your gene list	Related Term Search Percentag (involved	Genes involved in the term ge, e.g. 14/171=8.2	Modified Fish P-Value, EASt The smaller, 1 % enriched.	E Scor

Discuss the results of the DAVID's calculation with your neighbours.

3.7. On the previous steps (4.1-4.6) we have analysed all genes that are bound by p53 at their promoters. Now let's narrow down this list. Please go back to the Excel file and select only those genes which have p53 at their promoters and their expression was significantly **up-regulated** upon treatment (log2 fold change >1):

File		Home Ins	ert Pa	ige Layo	ut Formu	las D	lata Reviev	v View	Acrobat		p	eaks	intersect
A	X	Cut	Calibri	i .	- 11 -	A A	• = = ,	· 20-	Wra	p Tex	t	Gene	eral
Paste	-	Сору *	в	111.	100+14	- A	. = = 1	-	The Mar	na Re	Center +		- % •
*		ormat Painter		<u> </u>		-		and the state		ye u		-3	
	Clipbo	~			Font		5	Alignme	ent		.6		Number
	V	1	• (*		<i>f</i> ∗ NA								
1	S	T		U	V		W	Х	Y		Z		AA
1		Ttc38			0 NA	٣	NA	NA	NA		NA		
2	2.	Sort Smalles	t to Large	est			NA	NA	NA		NA		
3	Z A	Sort Largest	to Smalle	est			0.055809	31.58746	######	###	######	###	
4		Sort by Colo	r					4.613877			2.37E		
5	1	Clear Filter F	rom "NA					11.65215			6.62E		
6		Filter by Cold					0.260172	4.730944	2.23E	-06	1.39E	-05	
7 0	3						NA	NA	NA	1	NA		
8		Number <u>Filte</u>	ers				<u>E</u> quals.				NA		
9		Search				2	Does N	ot Equal		##	######	###	
10		✓ (Select	(IIA)				Greater	Than		63	2.61E	-61	
11		-2.471	492136			=	Greater	Than <u>O</u> r Equa	al To	14	1.62E-	-13	
12							Less Th			88	0.9881	194	
13		-2.138					100000000	an Or Egual T		05	0.0002	251	
14		-1 677				*			0		NA		
15					1	.]	Betwee	n		19	1.91E-	-18	
16				OK	Can	cel	<u>T</u> op 10.				NA		
17		Edazr	-	-	UINA		Above	Average			NA		

22 C	Cluster(s)				E.	Downlo	oad File
	Annotation Cluster 1	Enrichment Score: 6.94	G		Count	P_Value	Benjamini
	GOTERM_CC_DIRECT	mitochondrion	RT	=	123	4.2E-10	2.2E-7
	UP_KEYWORDS	Mitochondrion	RI	=	81	3.6E-9	4.1E-7
	UP_KEYWORDS	Transit peptide	RI	=	45	4.3E-7	2.1E-5
	UP_SEQ_FEATURE	transit peptide:Mitochondrion	RI	=	40	2.8E-4	4.0E-1
	Annotation Cluster 2	Enrichment Score: 6.01	G		Count	P_Value	Benjamin
	UP_KEYWORDS	Lysosome	RT	-	32	7.1E-9	4.9E-7
	GOTERM_CC_DIRECT	lysosome	RI	=	38	2.2E-8	3.0E-6
	KEGG_PATHWAY	Lysosome	RI	E	19	1.1E-5	2.7E-3
	GOTERM_CC_DIRECT	lysosomal membrane	RI	a	22	5.5E-4	2.6E-2
	Annotation Cluster 3	Enrichment Score: 3.85	G		Count	P_Value	Benjamin
	UP_KEYWORDS	Metal-binding	RI	_	181	1.4E-6	5.3E-5
	GOTERM_MF_DIRECT	metal ion binding	RI	_	180	4.5E-5	2.0E-2
	UP_KEYWORDS	Zinc	RI	=	109	7.3E-4	1.6E-2
	UP_KEYWORDS	Zinc-finger	RT	=	79	8.9E-3	8.0E-2

3.8. Now submit them again to DAVID and repeat steps 3.2-3.6 in DAVID as above:

3.9. Now let's do the same type of analysis but only for the genes which contain p53 at their promoters and are **down-regulated** upon treatment (expression log2 fold change <0):

File	Hom	le Insert	Page L	ayout	Formulas	D	ata Review	v View	Acrobat								
Ĉ	Cut		alibri		- 11 - A	Â	• = =	≫⁄-	Wrap Tex	ĸt	Gen	eral	¥	<u> </u>		÷	*
Paste	I Forma	- B	Ι Ι	<u>J</u> - [- 🍐 -	A	. = = :		🛥 Merge &	Center •	9	• % •	0. 00. 00.	Conditional Formatting *	Format Cell as Table - Styles -	Insert •	Delete Format
	Clipboard	Fa		Font	t	ſ	2	Alignme	ent	Fa		Number	Гъ		Styles		Cells
	R1	▼ (9	f_x	Ttc38												
	S	Т	U		V		W	Х	Y	Z		AA	AB	AC	AD	AE	AF
1		Ttc38		1 0	NA	.T .	NA	NA	NA	NA							
3		Ckap2	5255	.934	1.762861	476	0.055809	31.58746	########	######	###		0.312	581			
4		Bax	35.74	425	1.584507	423	0.343422	4.613877	3.95E-06	2.37E	-05						
5		Phlda3	982.9	958	1.139347	638	0.09778	11.65215	2.24E-31	6.62E	-30						
6		Bbc3					0.260172										
9		Zfp365	-				0.004016	20 20575	*****	******	+##					2	x
10		Traf4	1947	Custo	m AutoFilt	er											
12		Ccdc58	4.83	Show	v rows wher	e:											
13		Rps27l	64.9	N	IA												
15		Klhl26	80.		is less that	n		• 0									-
18		Svop	15.		Ance A) <u>O</u> r										
20		Btg2	1245					•									-
21		Rps19	5.16				L										
22		Bbc3	67.7				y single chara										
24	D'I	Nudcd2	8.84	Use '	* to represe	nt an	y series of cha	aracters									
	LRik	6530418L	-												ОК	Can	cel
26		Trp53inp1		705	1 1 6 0 8 4	165	0.086750	12 20014	7.005.41	2 246	20		_				
27		Sesn2	1225		1.16084	200	0.086759	10.0001.	7.902-41	3.31E							

Repeat steps 3.2-3.6 using the set of downregulated genes.

Here is what we get for the downregulated p53-dependent genes:

Annotation Cluster 1	Enrichment Score: 4.82	G		Count	P_Value Benjamini
UP_KEYWORDS	Cell cycle	RT	=	43	1.4E-7 7.5E-6
GOTERM_BP_DIRECT	<u>cell cycle</u>	RT	—	43	7.0E-7 1.7E-3
UP_KEYWORDS	Cell division	<u>RT</u>	=	26	4.8E-5 1.4E-3
GOTERM_BP_DIRECT	mitotic nuclear division	<u>RT</u>	a	22	1.1E-4 8.4E-2
UP_KEYWORDS	Mitosis	<u>RT</u>	E	20	1.2E-4 3.2E-3
GOTERM_BP_DIRECT	cell division	<u>RT</u>	=	26	1.8E-4 7.2E-2
Annotation Cluster 2	Enrichment Score: 4.33	G		Count	P_Value Benjamini
UP_KEYWORDS	Mitochondrion	RT	=	63	2.4E-8 1.5E-6
UP_KEYWORDS	Transit peptide	RT	=	30	2.3E-4 4.3E-3
UP_SEQ_FEATURE	transit peptide:Mitochondrion	<u>RT</u>	=	26	1.8E-2 9.7E-1
Annotation Cluster 3	Enrichment Score: 3.66	G		Count	P_Value Benjamini
UP_KEYWORDS	Protein transport	RT	—	39	9.0E-7 3.1E-5
GOTERM_BP_DIRECT	protein transport	RT	=	39	1.0E-5 1.3E-2
UP_KEYWORDS	Transport	RT	=	71	9.0E-3 7.5E-2
GOTERM_BP_DIRECT	transport	RT	=	70	2.8E-2 7.9E-1
Annotation Cluster 4	Enrichment Score: 2.75			Count	P_Value Benjamini
UP_KEYWORDS	Endoplasmic reticulum	RT	-	49	1.6E-4 3.5E-3
GOTERM_CC_DIRECT	endoplasmic reticulum	RT	=	57	4.5E-3 1.1E-1
GOTERM_CC_DIRECT	endoplasmic reticulum membrane	RI	=	34	7.8E-3 1.8E-1

We can see that the genes responsible for the cell cycle are downregulated after treatment. What does this mean? Probably, the cells are struggling with doxorubicin-induced DNA damage and cannot enter the cell cycle? Would this be consistent with doxorubicin action leading to cell apoptosis? How is this related to p53 binding? Discuss with your neighbours.

4) Perform GO analysis with GOrilla

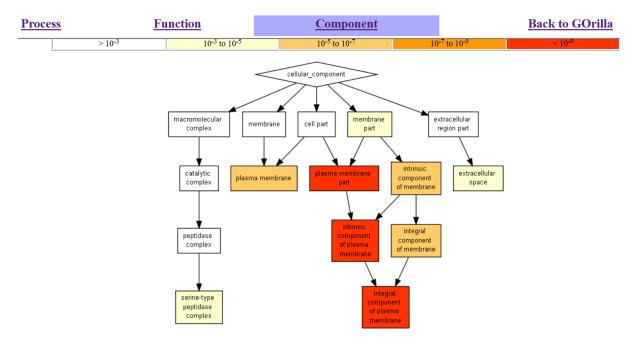
4.1. Go to this web address: http://cbl-gorilla.cs.technion.ac.il

GOrilla - a tool for identifyi × +									
(cbl-gorilla.cs.technion.ac.il		C Q gorilla go an	alysis	÷	☆自	Ŧ	A	8	A :
	GO RILLA		1						
Gene Ontol	ogy en RI chment anaLysi	s and visuaLizA	tion tool						
GOrilla is a tool for identifying and visualizing enriched GO terms in rank It can be run in one of two modes:	xed lists of genes.								
 Searching for enriched GO terms that appear densely at the top of a rank Searching for enriched GO terms in a target list of genes compared to a 									
For further details see <u>References</u> .									
Running example Usage i	nstructions GOrilla News(Up	dated March 8th 2013)	References	Contac	t				
Step 1: Choose organism									
Homo sapiens 🔹									
Step 2: Choose running mode									
Single ranked list of genes Two unranked lists of genes (target)	et and background lists)								
Step 3: Paste a ranked list of gene/protein names									
Names should be separated by an <enter>. The preferred format is get symbol. Other supported formats are: gene and protein RefSeq, Uniprot</enter>									

4.2. Select the following options, and then click the button "Search enriched GO terms":

Step 1: Choose organism – Mus musculus

Step 2: Choose running mode ^(*) Two unranked lists of genes (target and background lists)


Step 3: Paste a ranked list of gene/protein names

Target set – paste here your list of upregulated genes.

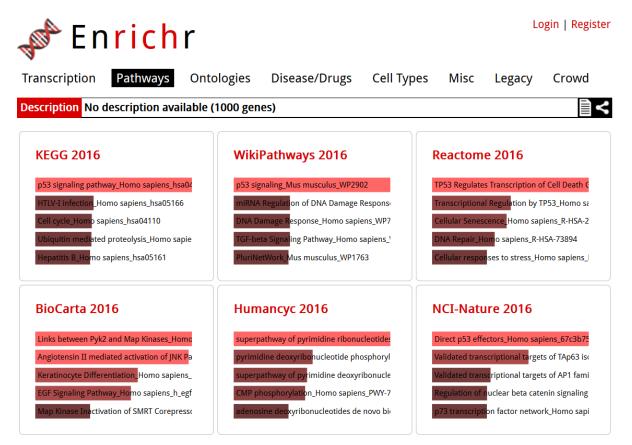
Background set – paste here ALL the gene names of the mouse genome (you can get this list from the following file that needs to be copied from the cluster to your computer: /storage/projects/BS312/promoters_mm9_52k.bed)

Step 4: Choose an ontology – ALL

4.3. Study the results calculated by GOrilla. When the figure is larger than the screen, use arrows to see it all. You will obtain figures like this one:

5) Perform Gene Ontology enrichment analysis using EnrichR

5.1. Open <u>http://amp.pharm.mssm.edu/Enrichr/</u>. Prepare on your computer the BED file with all p53 peaks that you have determined previously (you can get the file <u>Galaxy-[p53_peaks].bed</u> from Moodle <u>https://moodle.essex.ac.uk/mod/folder/view.php?id=397737</u>, or download it directly from Galaxy).


Upload your BED file with all p53 peaks to EnrichR using the "Browse" button; select "mouse mm9", then click "submit":

🖉 Enric	hr				Login Register 5,576,889 lists analyzed
Analyze What's New?	Libraries	Find a Gene	About	Help	
Input data					
Choose an input file to upl list of genes. For a quantita the level of membership o level is a number between weight for each gene, whe completely discard the ger analysis and the weight of	ative set, add a co f that gene. The r 0.0 and 1.0 to re re the weight of (ne from the enric	omma and membership present a 0.0 will hment	a comma ar		mbols optionally followed by nbership. Try two examples: t example
Try an example BED file.					
Browse peaks_format	ted.bed				
Select parameters for bed	file to gene list o	conversion.			
Species:	Mouse	e mm9 🔻			
Max number of genes:	1000	•			.4
					0 gene(s) entered

EnrichR will calculate for you the enrichments of many different genomic features at the regions submitted in your BED file. E.g., this is the "Transcription" panel:

🕈 Enrichr		Login Regi
anscription Pathways Onto	ologies Disease/Drugs Cell Ty	pes Misc Legacy Crowd
<mark>scription</mark> No description available (1000 genes)	
ChEA 2016	TRANSFAC and JASPAR PWMs	Genome Browser PWMs
TP53_20018659_ChIP-ChIP_R1E_Mouse	SP1 (mouse)	V\$TAXCREB_02
TP53_23651856_ChIP-Seq_MEFs_Mouse	SMAD4 (mouse)	V\$PPARA_01
NUCKS1_24931609_ChIP-Seq_HEPATOCYTES	TCFAP2A (human)	TAAWWATAG_V\$RSRFC4_Q2
TCF7_22412390_ChIP-Seq_EML_Mouse	PCBP1 (human)	V\$STAT3_02
RUNX2_24764292_ChIP-Seq_MC3T3_Mouse	ZBTB7A (human)	V\$EGR_Q6
ENCODE and ChEA Consensus TFs from ChIP-X	Epigenomics Roadmap HM ChIP-seq	TargetScan microRNA
TP53_CHEA	H3K56ac H1	ACATTCC,MIR-1,MIR-206
UBTF_ENCODE	H3K27ac H1 Derived Neuronal Progenitor Cu	ACTGTAG,MIR-139
CTCF_ENCODE	H3K27ac iPS DF 6.9	AAGGGAT, MIR-188
ZBTB7A_ENCODE	H2BK120ac IMR90	GTGTTGA, MIR-505
TCF3_ENCODE	H3K27ac CD4 Naive Primary Cells	CTTGTAT, MIR-381

Interestingly, EnrichR finds p53 and p53-related features as top hits. Importantly, EnrichR does not know which experiment we are working on, it only knows the genomic coordinates of the peaks obtained after ChIP-seq. If these peaks look to EnrichR like p53 binding, then this means that our analysis is correct and our peaks indeed represent p53 binding. Convincingly, the "Pathways" panel of EnrichR is almost completely devoted to p53 binding:

What new information did you learn with EnrichR? Discuss with your neighbours.