Integrative NGS Analysis Practical – Proficio Course – June 6, 2017.

Vladimir Teif (vteif@essex.ac.uk)

An updated version of this document will be available at http://generegulation.info/index.php/teaching

Summary

In this practical we will learn how to perform integrative analysis of ChIP-seq and RNA-seq data. We will continue working on the data reported in the study entitled "Integrative genomic analysis reveals widespread enhancer regulation by p53 in response to DNA damage" (Younger et al. (2015) *Nucleic Acids Res.* 43 (9): 4447-4462). The full text of this article is available at the following link: <u>http://nar.oxfordjournals.org/content/43/9/4447.long</u>. In the previous sessions we have determined the locations of bound p53 and quantified changes of gene expression following activation of DNA repair by doxorubicin. Here we will use the file with p53 peaks from the first practical and the file with RNA-seq quantification by DEseq2 from the second practical and will learn how to combine these.

Converting DEseq output to a BED-compatible format

Some people say that 90% of bioinformatics is data conversion from one format to another. Bioinformaticians do not agree with this and cannot tell you what constitutes the remaining 10% O

Today we have been doing format conversions already; now let us focus on this task a bit more. First of all, let us look at the output of DEseq2 software, summarised in the file DEseq2_results.txt that we have downloaded from Galaxy and copied to the directory /storage/projects/proficio/ChIPseq. It contains differential gene expression data:

GeneID	Base mean	log2(FC)	StdErr	Wald-Stats	P-value	P-adj
Ccng1	10253.9565478971	2.1733415985728	0.0496837029960621	43.7435510542573	0	0
Plau	2868.70628875291	2.29644968758308	0.0591563933877861	38.8199745804182	0	0
Adamts5	2965.14805964652	-3.5324246968983	0.0745015980961711	-47.4140795253604	0	0
Nr4a1	1953.34530631308	3.1725957908854	0.0746751971051276	42.4852683872937	0	0
Ptx3	10991.9420032442	-2.54241242151884	0.0486014725308458	-52.3114278050991	0	0
Icam1	4478.63735905254	2.23008961534929	0.0578959006213177	38.5189554254582	0	0
Notch3	2249.90055725676	2.73860762232716	0.0732767783235185	37.3734719918519	1.05419963864197e-305	1.6483164349909e-302
Epha2	2135.073342786	2.45779451307348	0.0672508448471497	36.5466711780298	2.01401713077518e-292	2.75542718704179e-289
Crip2	1442.08969261518	2.94651026539472	0.0842783818167692	34.9616378705605	8.61827045902016e-268	1.04807744637751e-264
Il6st	12913.6159391834	-1.45668667038069	0.042416124701033	-34.3427571624717	1.80658921536963e-258	1.97731189622206e-255
Mt2	2187.97154447509	-1.97523511200763	0.0620548411881086	-31.8304756597482	2.45248102528859e-222	2.44021862016215e-219
Mki67	8680.16437898843	-1.79983281997386	0.0568558109468329	-31.6560926667095	6.25200113502026e-220	5.70234603523307e-217
Ckap2	5255.93442864738	1.7628614755545	0.0558089037520847	31.5874592947663	5.48925058747985e-219	4.62152674461284e-216

As you can see, the first column gives us the name of the gene, the third column gives expression log2 fold change, and the fifth column gives the P value. These are perhaps the most interesting columns from the point of view of what changes and how much is the change upon cell treatment.

Now let us look at the file peaks_formatted.bed containing p53 bound sites that we have created during the first ChIP-seq analysis practical:

chr8	13548925	13549101	+	1050.7	0.888	307	1160.7	3	386.91	0.00E+00	143.98	0.00E+00	0.58
chr12	111963380	111963556	+	1015.2	0.89	319	1121.5	2	560.76	0.00E+00	216.46	0.00E+00	0.55
chr7	139921178	139921354	+	810.2	0.91	292	895.1	5	179.01	0.00E+00	169.87	0.00E+00	0.6
chr8	12634989	12635165	+	654	0.934	157	722.5	1	722.52	0.00E+00	82.94	0.00E+00	1.11
chr4	128252925	128253101	+	600.8	0.864	186	663.7	4	165.92	0.00E+00	52.7	0.00E+00	0.93
chr1	156903370	156903546	+	561.7	0.908	263	620.6	5	124.11	0.00E+00	101.82	0.00E+00	0.65
chr10	90881469	90881645	+	537.8	0.808	241	594.1	2	297.05	0.00E+00	104.72	0.00E+00	0.71
chr7	87100003	87100179	+	525.3	0.969	150	580.4	2	290.18	0.00E+00	65.18	0.00E+00	1.21
chr17	29227791	29227967	+	500.5	0.877	261	552.9	4	138.23	0.00E+00	38.91	0.00E+00	0.65
chr8	23544523	23544699	+	473	0.866	187	522.5	3	174.18	0.00E+00	20.91	0.00E+00	0.8⊆
chr5	140199090	140199266	+	459.7	0.863	266	507.8	4	126.95	0.00E+00	98.01	0.00E+00	0.62
chr10	117154716	117154892	+	449	0.894	234	496.1	4	124.01	0.00E+00	98.41	0.00E+00	0.71
chr1	54901247	54901423	+	444.6	0.914	246	491.2	4	122.79	0.00E+00	135.75	0.00E+00	0.67
chr8	64780293	64780469	+	437.5	0.923	226	483.3	2	241.66	0.00E+00	211.68	0.00E+00	0.73
chr15	85690303	85690479	+	428.6	0.895	231	473.5	0.5	947.02	0.00E+00	82.45	0.00E+00	0.71
chr9	117068448	117068624	+	423.3	0.659	221	467.6	9	51.96	0.00E+00	24.36	0.00E+00	0.74
chr3	32263187	32263363	+	419.7	0.925	231	463.7	4	115.93	0.00E+00	99.63	0.00E+00	0.7
chr8	23545199	23545375	+	419.7	0.745	247	463.7	5	92.74	0.00E+00	17.78	0.00E+00	0.66
chr10	117147028	117147204	+	418.8	0.832	241	462.7	2	231.36	0.00E+00	76.15	0.00E+00	0.67
chr2	167389561	167389737	+	407.3	0.911	198	450	3	149.99	0.00E+00	81.59	0.00E+00	0.84
chr4	149423131	149423307	+	407.3	0.801	236	450	2	224,99	0.00E+00	49.37	0.00E+00	0.69

In the BED file above, each line corresponds to one p53 peak determined in ChIP-seq. The first column gives the chromosome number, the second column – region start, the third column – region end, the fourth column – strand (all peaks are assumed to be on the plus strand, because the strand information actually disappears after we call a peak), the fourth column is the score of the peak (the higher the peak the bigger its score). These are all the columns that we will need.

It is easy to see that the RNA-seq data and ChIP-seq data are represented in quite different formats. For example, the RNA-seq data only contain the gene name, but do not contain the genomic coordinates of this gene. Since the mouse genome is pretty much annotated, it is possible to get genomic coordinates for each gene, but doing this manually would be too much work. We need to need to make some trick in order to add the genomic coordinates to the genes. But before we do this, let us ask ourselves a question: what is it that we want to learn from the combined analysis of RNA-seq and ChIP-seq? May be we have some hypothesis that we want to check?

I have one hypothesis. I guess that p53 binding at regulatory regions should affect the genes associated with those regulatory regions. What are the regulatory regions? Promoters and enhancers. Let us just take the promoters for simplicity. Promoters are the regulatory regions upstream of the gene. There is no consensus among scientists as to how large the promoters are. A good estimate for a promoter size is about 1-2 kb. We have previously used a BED file with coordinates of all mouse promoters, named "promoters_mm9.bed":

chr4 4221E000 42217000 CVT 12043623 4K047126 CVL 778728 CV	m10931
$CIII 4 42213999 42217999 - GAI_12943023 AR047120 GAL_770720 G$	64.04
chr7 109212607 109214607 - GXT_12944438 AK078509 GXL_287330 R	nt121
chr14 5944054 5946054 - GXT_12946537 AK084071 GXL_778563 G	m10021
chr17 95233138 95235138 - GXT_12947170 AK082664 GXL_461852 G	m1976
chr17 95148281 95150281 - GXT_12947186 AK080683 GXL_473176 M	ett14
chr19 39536565 39538565 - GXT_12947662 AK050051 GXL_171813 C	yp2c38
chr7 109207990 109209990 - GXT_12949553 AK034806 GXL_287330 R	nf121
chr7 109212649 109214649 - GXT_12949662 AK089714 GXL_287330 R	nf121
chrX 67694797 67696797 - GXT_12950375 AK089806 GXL_216606 A	K089806
chr17 95148211 95150211 - GXT_12951740 AK043389 GXL_473176 M	ett14
chr17 53092628 53094628 - GXT_12951756 AK040895 GXL_225725 K	cnh8
chr17 33391090 33393090 - GXT_12951767 AK038946 GXL_660138 Z	fp955a
chr17 6957390 6959390 - GXT_12951785 AK035271 GXL_155066 E	zr
chr4 25541413 25543413 - GXT_12953332 AK085009 GXL_282468 F	ut9

This file contains almost 200,000 promoters in the mouse genome. Interestingly, the number of annotated genes in the mouse genome is just about 60,000. How is it possible, that there are more promoters than genes? For example, in the table above we can spot three instances of gene Rnf121, which has three different promoters. Indeed, many genes have several alternative transcripts, alternative transcription start sites, and each of these alternative transcription start sites has its own promoter. But the problem is that the file with the results of DEseq quantifies gene expression per gene, not per gene transcript. There is an easy (and dirty) solution to remove some lines from the file promoters_mm9.bed which contain duplicated gene names. By doing so, we keep only one promoter per gene. It is easy to do this in Excel, so I have done it for you. File promoters_mm9_52k.bed contains one promoter per gene, in total about 52 thousand genes.

Adding promoter coordinates to the differential gene expression data

Let us now take the file with differential gene expression (DEseq2_results.txt) and the file with promoters (promoters_mm9_52k.bed) and combine them in such a way so that for each gene we would have both the coordinate of its promoter (taken from the file promoters_mm9_52k.bed) and the values of its expression fold change (taken from file DEseq2_results.txt). The genes in these two files are sorted differently, therefore the script that is doing this has to read each of these large files and pair the corresponding lines from these two files which contain the same gene name. We have recently developed a software package called NucTools (https://homeveg.github.io/nuctools), which includes a Perl script merge2tabs.pl that is doing exactly this. I have copied the script merge2tabs.pl to the directory /storage/projects/proficio/ChIPseq. The command calling script merge2tabs.pl in order to merge files promoters_mm9_52k.bed and DEseq2_results.txt is written in your bash file Task_6_DEseq_to_BED_format.sh as follows:

```
perl /storage/projects/proficio/ChIPseq/merge2tabs.pl --
table1=/storage/projects/proficio/ChIPseq/promoters_mm9_52k.bed --
table2=/storage/projects/proficio/ChIPseq/DEseq2_results.txt --
output=promoters_and_DEseq.bed --colID_tab1=3 --colID_tab2=0
```

All you need for this step is just to execute the bash file Task_6_DEseq_to_BED_format.sh:

qsub Task_6_DEseq_to_BED_format.sh

After the execution of this bash file you will get a new file named promoters_and_DEseq.bed.

The execution of Task_6_DEseq_to_BED_format.sh takes about 20 minutes, please wait.

Intersecting p53 peaks with promoter-based RNA-seq data

After we have added promoter coordinates to the RNA-seq differential expression file, the resulting file promoters_and_DEseq.bed looks like this:

chr4	42215999	42217999	Gm10931	Gm10931 0	NA	NA	NA	NA	NA
chr7	109212607	109214607	Rnf121	Rnf121 0	NA	NA	NA	NA	NA
chr14	5944054	5946054	Gm10021	Gm10021 0	NA	NA	NA	NA	NA
chr17	95148281	95150281	Mett14	Mett14 0	NA	NA	NA	NA	NA

Here the first column is the chromosome number, the second column in region start, the third column is region end, then goes the gene name and its differential expression data (in this case of the four genes printed here the expression data is not available, but for most other genes these are available). We can notice that this resembles the BED format which we have seen a lot previously during the ChIP-seq practical. And we know how to find the intersection between two files in BED format. This is what we previously did for the intersection of p53 sites with different genomic features. Now let us intersect p53 sites with the promoters linked to their corresponding gene expression data from RNA-seq. All we need to do is to intersect regions in the file peaks_formatted.bed and promoters_and_DEseq.bed. This is realised for you in the next bash file Task_7_intersect_DEseq.sh:

```
intersectBed -a
/storage/projects/proficio/ChIPseq/peaks_formatted.bed -b
/storage/projects/proficio/ChIPseq/promoters_and_DEseq.bed -wb >
peaks_intersect_DEseq.bed
```

All we need to do now is just to execute bash file Task_7_intersect_DEseq.sh.

qsub Task_6_DEseq_to_BED_format.sh

The results of this calculation are stored in a new file called peaks_intersect_DEseq.bed.

The file peaks_intersect_DEseq.bed finally contains all the information we need to integrate p53 binding ChIP-seq and gene expression RNA-seq data. Let us copy this file to our local computer using WinSCP, and then open it in Excel:

	🖬 🤊 - 🤊	• 🛛 🖛						1	peaks_interse	t_DEseq -	Microsoft Exc	cel						- (
	File Horr	e Insert	Page Layout	t Formula	is Data	Review View	Acrobat											۵ 🕻
ľ	Cut	Ca	libri	· 11 ·	A* ▲* =	= 들 🗞 -	📑 Wrap	o Text	General	٠		🕎 🕎	i		Σ AutoSum	· 🖅 🥀	1	
Pa	ste V Forma	t Painter B	1 ∐ -	🗄 T 🍐	· <u>A</u> · =	= = it :	📕 💀 Merg	je & Center *	∰ -% '	0.0 00.00	Conditional Formatting • a	Format Cell as Table + Styles +	Insert Delete	Format	Clear •	Sort & Find Filter * Selec	8k t =	
	Clipboard	Gi .	Fo	nt	5	Alig	nment	6	Numbe	ar G	S	tyles	Cells		E	diting		
	AB10		÷ .	fx														
	A	В	С	D	E	F	G	н	1	J	K	L	M	N	0	P	Q	R
1	chr15	85690303	85690440) +	428.	6 0.895	231	473.5	0.5	947.02	0.00E+00	82.45	0.00E+00	0.7	'1 chr15	85688440	85690440	Ttc38
2	chr15	85690303	85690479	+	428.	6 0.895	231	473.5	0.5	947.02	0.00E+00	82.45	0.00E+00	0.7	'1 chr15	85689175	85691175	Gtse1
3	chr8	23296397	23296573	+	348.	7 0.89	208	385.3	7	55.04	0.00E+00	137.97	0.00E+00	0.7	5 chr8	23295245	23297245	Ckap2
4	chr7	52721866	52722042	+	344.	3 0.797	211	380.4	2	190.19	0.00E+00	61.7	0.00E+00	0.7	4 chr7	52721178	52723178	Bax
5	chr1	1.38E+08	1.38E+08	+	322.	1 0.85	210	355.9	1	355.87	0.00E+00	45.53	0.00E+00	0.7	'3 chr1	1.38E+08	1.38E+08	Phida3
6	chr7	16893989	16894165	i +	249.	4 0.819	182	275.5	3	91.83	0.00E+00	27.23	4.97E-288	0.7	6 chr7	16893932	16895932	Bbc3

This picture shows only part of the Excel file. Here we can see the information about the peaks. If we scroll more to the right, we will see the second part of the same file:

×) (° -	Ŧ						peaks_	intersect_DE	seq - Micros	oft Excel								- 0
Fi	e Home	Insert	Page Layout	Formulas	Data Review	View A	icrobat												۵ 🕜 🗆
Ê	🖁 👗 Cut	Cal	ibri -	11 - A	. = = <u>-</u>	æ.	Wrap Text	Gene	ral	· 🖡			H = 3	< 📰	Σ Auto	Sum • 🍂	- #A		
0	📙 Copy -					-		5.28		a na Candi	22 💷		Incore Carlo		🛃 Fill י		Card Do		
Past	🛛 🚿 Format	Painter B	IU·	□ * <u>@</u> * <u>A</u>	. = = =	1 F 1 F	• 👪 Merge & Co	inter * 📆 *	% .0	Format	tting * as Tab	le • Styles •	insert Dele	*	Clea	Filte	r * Select *		
	Clipboard	6	Font		6	Alignme	nt	5	Number	6	Styles		Cell	s		Editing			
	AB10	- (f_x																
	1	J	K	L	м	N	0	Р	Q	R	S	т	U	V		W	х	Y	Z
1	0.5	947.02	0.00E+00	82.45	0.00E+00	0.7	1 chr15	85688440	85690440	Ttc38		Ttc38	(D NA	1	NA	NA	NA	NA
2	0.5	947.02	0.00E+00	82.45	0.00E+00	0.7	1 chr15	85689175	85691175	Gtse1		Gtse1	(D NA	1	NA	NA	NA	NA
3	7	55.04	0.00E+00	137.97	0.00E+00	0.7	5 chr8	23295245	23297245	Ckap2		Ckap2	5255.934	1.76286	1476	0.055809	31.58746	******	******
4	2	190.19	0.00E+00	61.7	0.00E+00	0.7	4 chr7	52721178	52723178	Bax		Bax	35.7442	5 1.58450	7423	0.343422	4.613877	3.95E-06	2.37E-05
5	1	355.87	0.00E+00	45.53	0.00E+00	0.7	3 chr1	1.38E+08	1.38E+08	Phida3		PhIda3	982.995	3 1.13934	7638	0.09778	11.65215	2.24E-31	6.62E-30
6	3	91.83	0.00E+00	27.23	4.97E-288	0.7	6 chr7	16893932	16895932	Bbc3		Bbc3	67.78693	1.23086	0618	0.260172	4.730944	2.23E-06	1.39E-05
7	4	65.93	0.00E+00	72.89	0.00E+00	0.	8 chr12	1.02E+08	1.02E+08	90306170	03Rik	90306170) (NA	1	NA	NA	NA	NA

Let us focus on the quantitative characteristics of p53 binding to the promoter and changes of gene expression changes for the corresponding gene. The strength of p53 binding is characterised by the ChIP-seq peak height, which is given by the peak score in column "E". The change of gene expression is given by the log2 fold change in the column "V".

The simplest hypothesis that we can text now it this: whether the strength of p53 binding at the promoter is correlated to the change of gene expression? To test this hypothesis we need to calculate the colleration between columns "E" and "V". This is easy to do in Excel. Just select some empty cell and ask Excel to calculate in this cell the correlation between columns "E" and "V":

X	- 9 · (°	~ -									
F	ile Hom	e Insert	Page	e Layout	Formulas	Data	Review	View	Acrobat		
Ê	Cut	6	Calibri		- 11 - A	A I	= =	≫	Wra	p Tex	
Pas	te 💜 Forma	t Painter	в 1	<u>U</u> - <u></u>	- 🍐 -	<u>A</u> - I		i i	📕 💀 Mer	ge &	
	Clipboard	5		Font	t	5		Aligr	Alignment		
	AB3	-	• (*	f_{x}	=CORRE	EL(E:E,\	/:V)				
	Y	Z		AA	AB	AC	4	D	AE		
1	NA	NA									
2	NA	NA		0	Correlatio	n betw	een pea	k score	and log2	fold	
3	########	#######	##		0.312581						
4	3.95E-06	2.37E-0)5								

And just in case if you are still wondering where to find the CORREL function in Excel, here it is:

S	. . . (°	* -									peaks_iı	ntersect_DE	seq	- 1	Microsoft Ex	cel
F	ile Hom	ie Insert	Page Layout	Formulas	Data Re	eview Vi	ew	Acrobat								
J Ins Fund	ert AutoSu	m Recently Fir Used •	hancial Logica	al Text Dat	e & Lookup ne * Reference	₩ Math & e ▼ Trig ▼	N Func	tore M	Name anager	je De fe Us ⊡ Cr	fine Nan e in Forn eate fron	ne ▼ nula ▼ n Selection	}>1 -∰1 R	Trac Frac Ren	ce Precedents ce Dependents move Arrows	Show Fc s 🅠 Error Ch r 🙆 Evaluate
_	AB5	• (• 1					Statistical			AVEDE	V			10	
	v	7		ΔR	AC	AD		Engineeri	ing 🖡	2	AVERA	GE		ŀ	Δ1	Δ1
1	ΝΔ	ΝΔ	~~		AC			Cube			AVERA	GEA	=	-		~j
2	NA	NA		Correlatio	n between	peak sco		Informati	on 🕨		AVERA	GEIF				
3	#########	#########		0.312581			LA	Compatit	oility 🕨		AVERA	GEIFS		1		
4	3.95E-06	2.37E-05									BETA.D	IST				
5	2.24E-31	6.62E-30									BETA.IN	٩V				
6	2.23E-06	1.39E-05									BINON	I.DIST				
7	NA	NA									BINON	I.INV				
8	NA	NA									CHISQ	DIST				
9	########	########									CHISQ	DIST.RT				
10	3.43E-63	2.61E-61									CHISQ	INV				
11	1.18E-14	1.62E-13									CHISQ	INV.RT				
12	0.975088	0.988194								_	CHISQ.	TEST				
13	5.04E-05	0.000251								_	CONFI	DENCE.NORI	и			
14	NA	NA								_	CONFI	DENCE.T				
15	1.03E-19	1.91E-18								_	CORRE	1				
16	NA	NA									COUN	г				
17	NA 1 005 00	NA									COUNT	CORREL(ar	ray1,	,arı	ray2)	
18	1.09E-09	9.90E-09									COUNT	Returns the	e cor	rela	ation coefficie	nt
19	NA #########	NA #########									COON	between tw	vo da	ata	sets.	
20	0 580717	0 75079								Jx	Insert F	🕜 Press F	1 for	m	ore help.	
21	0.365/1/	0.75076											-	_		

So, in my case the correlation is 0.31. Is it the same for you? \bigcirc

What can we say about this correlation? It is a moderate but statistically significant correlation. It tells us that those genes which contain the strongest p53 binding are characterised by the largest changes of gene expression when p53 pathways are induced due to antibiotic treatment. Did you expect to find it? Well, at least this is something non-trivial, and this is a publishable scientific result that we were able to derive from the integrative analysis of ChIP-seq and RNA-seq data.

Did the authors of the paper also notice this result? Yes they did. Interestingly, they came to a similar conclusion using another type of analysis of the same data. Now let us do some other analysis.

Calculating average aggregate occupancy profiles

If you remember the first overview lecture, there were a lot of plots with average profiles of protein binding around some genomic features. We have calculated in the first ChIP-seq practical p53 occupancy profiles chromosome-wide using HOMER (remember the HOMER tag directories?) Now we can use these to calculate average aggregate occupancy profiles of p53 around some genomic features. Say, we already know that p53 is enriched at promoters and enhancers, let us calculate p53 aggregate occupancy profiles around promoters and enhancers. This is realized for you in bash file Task_8_average_profiles.sh:

```
#!/bin/bash
#$ -cwd
#$ -q all.q
#$ -S /bin/bash
cd ~
#Calculate average profile of p53 binding around transcription start
sites (TSS):
annotatePeaks.pl tss mm9 -size 2000 -hist 10 -d HOMER_p53 >
profile_p53_around_TSS.txt
#Calculate average profile of p53 binding around transcriptional
enhancers:
annotatePeaks.pl /storage/projects/proficio/ChIPseg/enhancers mm9.bed
mm9 -size 2000 -hist 10 -d HOMER p53 >
profile_p53_around_enhancers.txt
#Calculate average A/T/C/G frequences around bound p53
annotatePeaks.pl
/storage/projects/proficio/ChIPseq/peaks_formatted.bed mm9 -size 2000
-hist 10 -CpG > profile_CpG_around_p53.txt
```

Here the first command calculates p53 occupancy around transcription start sites (notice the parameter "tss" in the HOMER command line below:

```
annotatePeaks.pl tss mm9 -size 2000 -hist 10 -d HOMER_p53 >
profile_p53_around_TSS.txt
```

Other parameters in this command tell HOMER that the size of the region around TSS should be 2000 base pairs, and that the calculation should be performed with the step 10 base pairs, and the occupancy data should be taken from the tag directory named "HOMER_p53", while the results should be placed in the output file named profile_p53_around_TSS.txt.

The second command in a similar way tells HOMER to calculate p53 occupancy profiles around enhancers:

```
annotatePeaks.pl /storage/projects/proficio/ChIPseq/enhancers_mm9.bed
mm9 -size 2000 -hist 10 -d HOMER_p53 >
profile_p53_around_enhancers.txt
```

The only difference here is that we need to tell HOMER where to take the enhancer coordinates (/storage/projects/proficio/ChIPseq/enhancers_mm9.bed).

The third command tells HOMER that we want to calculate the frequencies of A/T/C/G nucleotides around p53 binding sites. This is a useful function in the case if we are testing a hypothesis that our protein of interest binds e.g. primarily inside CpG islands:

```
annotatePeaks.pl
/storage/projects/proficio/ChIPseq/peaks_formatted.bed mm9 -size 2000
-hist 10 -CpG > profile_CpG_around_p53.txt
```

Now we just need to execute the bash file:

qsub Task_8_average_profiles.sh

This calculation takes just about 5 minutes.

After the calculation is finished, we can locate in our home directory the files named

```
profile_CpG_around_p53.txt
profile_p53_around_enhancers.txt
profile_p53_around_TSS.txt
```

and copy them using WinSCP to our local computer. Then we can open them in Excel:

	А	В	С	D	E	F	
1	Distance	/home/vte	/home/vte	/home/vte	eif/HOMER	_p53 - Tag	s
2	-1000	0.809066	0.003673	0.003854			
3	-990	0.807612	0.003695	0.003493			
4	-980	0.811521	0.003777	0.003717			
5	-970	0.812314	0.003761	0.003689			
6	-960	0.810728	0.003677	0.003751			
7	-950	0.809992	0.003715	0.003513			
8	-940	0.811748	0.003653	0.003783			

The first column shows the distance from the centre of the feature (e.g. the centre of enhancer). The second column shows the average p53 occupancy at this distance. Then we can make the plot based on these two columns:

X) · (°	• -								1	orofile_	p53_aro	und_enł	nancers	- Microsc	oft Excel
	File	Hom	e Insert	Page Layout	t Formula	as Data	a Revie	ew Vi	ew A	Acrobat							
	Þ			80		01 +		\mathcal{N}	0	=		···	O		ļļ.	11	
Pi	votTał	ble Table	Picture (Clip Shapes	SmartArt So	creenshot	Column	Line	Pie	Bar	Area	Scatter	Other	Line	Column	Win/Loss	Slicer
	T	ables		Art • Illustrat	ions	Ŧ	Ť	Ť	Ť	Charte	Ť	· ·	Charts *		harklin	95	Filter
	10	۸ <u>۱</u>	-	indstrat	E. Distor	nan fran	n Conto	r (am d		ototoDe	aka al	Scatte	r I I	_	oficio	/ChiDeee	/onhon
		AI	•		e Distai	ice iror	n cente	ii (cinu	-anno	Jialere	aks.pi	°.	° 🍾	2	Shero	/ Chirsed	/ ennan
		A	В	С	D	E		F		G	н	• ° °		<u>_1</u>		K	L
1	L Di	istance (/home/vt	/home/vt	/home/v	teif/HO	MER_p	53 - Ta	gs								
	2	-1000	0.809066	0.003673	0.00385	4						ll v	1 2	1			
3	3	-990	0.807612	0.003695	0.00349	3						\mathbb{L}^{\times}	1 20	8			_
-	1	-980	0.811521	0.003777	0.00371	7						<u> </u>	Scatter	with Sm	ooth Lin	ies	
		-970	0.812314	0.003761	0.00368	9						$ \rangle_{\mathcal{M}}$	Compa	re pairs o	of values.		
		-960	0.010720	0.002677	0.00275	1						PX					
_	,	-900	0.810728	0.003077	0.00373	1							Use it v	vhen ther	re are ma	iny data	
	/	-950	0.809992	0.003715	0.00351	3							points i	n x-axis (order and	i the data	
8	3	-940	0.811748	0.003653	0.00378	3							represe	ints a tun	icuon.		

For example, this is how my plot for the average p52 occupancy around enhancers looks:

Of course it is possible to adjust in Excel the scale and correct captions to make it a nicer figure:

Similarly, we can plot the average aggregate profile of p53 occupancy around transcription start sites:

Notice, that unlike p53 around enhancers, the profile of p53 around enhancers is asymmetric. Should it be expected to be asymmetric? Yes, because genes have directionality, and so do their transcription start sites. But did you expect to see the p53 peak mostly shifted downstream of TSS? Usually it is assumed that the promoter is more upstream than downstream of TSS. In this case it appears that p53 binds more at the part of the promoter downstream of TSS. Is it a scientific discovery? Hmm... may be. Or maybe this is something already well known. Oh, wait, we actually have to read a lot of paper before making scientific claims ©

Similarly, we can plot in Excel the nucleotide frequencies around p53 sites:

But what about the fine sequence patterns of p53 binding sites? We will learn them on the next step.

DNA sequence motif analysis

Remember when we did peak calling in the first ChIP-seq practical we also asked HOMER to calculate for us the DNA sequence motifs corresponding to the bound p53 peaks? Let us now look at these data. Open in WinSCP the directory /motifs inside your home directory:

📽 motifs - genome.essex.ac.uk - WinSCP		
Local Mark Files Commands Session Options Remote He	elp	
🖶 🔁 🎯 Synchronize 🔳 🧬 💽 🚸 🎒 Queue 🝷 Tra	ansfe	r Settings Default 🔹 🧭 🗸
🖵 genome.essex.ac.uk 🔛 New Session		
🚛 C: bs1315 🔹 🖆 🕎 🛍 💽 🏠 🎜 📥 🔹	() v	🛅 🔂 🏠 🦉 🖻 Find Files 🗧 🖛 • 🐡 • 📜 motifs 🔹 🖆 💟
🛙 🎲 Upload 👻 🖉 Edit 👻 🗶 📝 🕞 Properties 🖆 💽	»	📲 Download 🝷 📝 Edit 🍷 🗙 🧊 🕞 Properties 🖆 🕞 🗹
C:\vlad_work\Essex\proficio\scripts		/home/vteif/motifs
Name	*	Name
GSE55727_MEF_ChIP_peaks.bed		👗
GSE55727_MEF_ChIP_peaks.fa		l homerResults
merge2tabs.pl		knownResults
mm9.fa.fai	=	homerResults.html
mm9.genome		homerMotifs.motifs12
mm9_promoters_52k.bed		homerMotifs.all.motifs
eaks_formatted.bed		homerMotifs.motifs10
peaks_intersect_DEseq.bed		homerMotifs.motifs8
profile_CpG_around_p53.txt		knownResults.txt
profile_p53_around_enhancers.txt		knownResults.html
profile_p53_around_enhancers.xlsx		seq.autonorm.tsv
profile_p53_around_TSS.txt	-	motifFindingParameters.txt
· · · · · · · · · · · · · · · · · · ·	•	۰ III >
0 B of 24,241 KB in 0 of 25 1 his	dden	148 KB of 952 KB in 1 of 11
		🔒 SFTP-3 🖳 2:11:11

Now right-click on the file homerResults.html and select "open". The HTML file will open in your browser:

Homer de novo Motif Results (/home/vteif/motifs/)

Know	Known Motif Enrichment Results													
Gene	Ontology Enrichment Results													
If Ho	mer is having trouble matching a motif to a know	vn motif,	try copy/pas	sting the m	atrix file into S	TAMP								
More	information on motif finding results: HOMER	Descript	ion of Result	ts Tips										
Total	target sequences = 15377													
Total	fotal background sequences = 33092													
* - po	' - possible false positive													
Rank Motif P-value log % of % of STD(Bg Rest Match/Details Motif File														
Rank Motif P-value P-yalue Targets Background STD) Best Match/Details Motif File														
1 Gacarce 1e-3525 -8.118e+03 42.90% 6.51% 6.51% 42.5bp (68.8bp) p53(p53)/mES-cMyc-ChIP-Seq(GSE11431)/Homer(0.725) motif file (matrix)														
2	TGÇCIGGGCA	1e-1059	-2.439e+03	13.08%	1.73%	42.6bp (62.5bp)	ZNF416(Zf)/HEK293-ZNF416.GFP-ChIP-Seq(GSE58341) /Homer(0.870) More Information Similar Motifs Found	<u>motif file</u> (matrix)						
3	EETGAETCAE	1e-411	-9.474e+02	14.75%	5.30%	51.1bp (63.8bp)	Atf3(bZIP)/GBM-ATF3-ChIP-Seq(GSE33912)/Homer(0.991) More Information Similar Motifs Found	motif file (matrix)						
4	TIAGGCCTAGIC 1e-220 -5.072e+02 0.83% 0.01% 47.9bp (23.9bp) ZFX(Z1)/mES-Zfx-ChIP-Seq(GSE11431)/Homer(0.755) motif file (matrix)													

HOMER has found a number of motifs, ranked them based on the P values, and associated found motifs with known transcription factors from its database. The top hit is p53. Surprise, surprise ©

Remember, HOMER actually did not know what type of experiment was performed. It did not know that it was ChIP-seq with antibody against p53. The only information it had was the DNA sequence motifs most frequently found in the peaks determined based on this experiment. Based on these DNA sequence motifs, HOMER decided that the best matching transcription factor is p53. Bingo!

As the links in this HTML file suggest, you can click on them and get more information. We will let you to play around this file for several minutes independently...

Gene Ontology (GO) analysis

The last type of integrative analysis that we will learn is the easiest to do and also quite a fun thing. This type of analysis is based on the classification of molecular processes, pathways, and types of molecules into a number of scientific terms such as "apoptosis", "differentiation", "cell cycle", etc. Usually wet lab biologists love this type of analysis because it gives them an impression that they understood a lot about the system (in many cases this is an illusion, though). OK, let's just do it. As the introductory lecture suggested, there are many different online tools to perform GO analysis.

1.9. Let us perform GO analysis for genes which contain bound p53 at their promoters using software DAVID. Go to the internet and open this address: <u>https://david.ncifcrf.gov</u>:

Select "Functional annotation":

Select the "upload" link, then under "step 1" paste your list of genes from Excel in the gene list manager, under "step 2" select "official gene name", and under "step 3" select "gene list":

Upload List Background	Functional Annotation Tool					
Upload Gene List	Submit your gene list to start the tool!	Tell us how you like the tool Read technical notes of the tool Contact us for questions				
Upload Help	Key Concepts:					
Step 1: Enter Gene List	Term/Gene Co-Occurrence Probability					
A: Paste a list 2NF365 2NF469 2NF534 2NF541 2NF812 Clear	Ranking functional categories based on co-occurrence with sets unraveling new biological processes associated with cellular fur investigators to sort gene categories from dozens of annotation number of genes within each category or by the EASE-score. <u>M</u>	s of genes in a gene list can rapidly aid in tctions and pathways. DAVID 6.8 allows n systems. Sorting can be based either the lore				
Or	Gene Similarity Search					
B:Choose From a File Browse No file selected.	Any given gene is associating with a set of annotation terms. If most likely involved in similar biological mechanisms. The algor the agreement of sharing similar annotation terms by Kappa st	f genes share similar set of those terms, they are rithm tries to group those related genes based on atistics. <u>More</u>				
Multi-List File						
Step 2: Select Identifier	Term Similarity Search					
OFFICIAL_GENE_SYMBOL •	Typically, a biological process/term is done by a corporation of processes are done by similar set of genes, the processes migh This search function is to identify the related biological process of the agreement how terms share the similar narticination generation of the similar narticination generation and the similar narticination generation and the similar narticination generation of the similar narticination of the similar narticination generation of the similar narticinatio	a set of genes. If two or more biological t be related in the biological network somehow. es/terms by quantitatively measuring the degree 155 More				
Step 3: List Type	o ag					
Gene List 💿						
Background 💿	Integrated Solutions					

Under "Step 4" press "submit list". You will receive the following notification:

O DA	VID: Functio	onal Annotat.	× \ +							
()	https://	/david. ncifcrf	.gov/summar	ı.jsp			X Q	Search	1	☆
D	1	78	Da	INFORM TABASE	Funct DAVID Bioin	tional Annotati formatics Resources	i on Tool 6.8, NIAID/NIH			
Home	Start A	nalysis	Shortcut to	DAVID Tools	Technical Center	Downloads & APIs	Term of Service	Why DAVID?	About Us	
20%										
Upload	l List	Backgrou	und	Please note that left side of the pa used for analysis the left. By defau is not in use.	AVID 6.8 with m multiple species have b ige by highlighting the s . Also note that you m ult, the background corr	dated Knowledgebas been detected in your gene specific specie(s) and press ay need to select an approp responding to the first speci	e (more min). list. You may select a s ing the "Select" button. rlate background under es in the list will be sele	pecific specie(s) with the As a default, all species the "BACKGROUNDS" cted if an uploaded or A	e List Manager on the s in your list will be tab in the manager to ffymetrix background	
									ОК	

Click "OK", and then highlight "Mus Musculus" and press button "Select species":

(i) https://david.ncifcrf.gov/sum	imary.jsp	🖾 🤇 🔍 david ger
	Functional DAVID Bioinformation	Annotation Tool
Home Start Analysis Shortco	ut to DAVID Tools Technical Center Down	loads & APIs Term of Service
Unload List Background	*** Welcome to DAVID 6.8 with updated K *** If you are looking for <u>DAVID 6.7</u> , please	nowledgebase (<u>more info</u>). ** e visit our <u>development site</u> . **
Gene List Manager	Annotation Summary Res	ults
Select to limit annotations by one or more species <u>Help</u>	Current Gene List: List_1 Current Background: Mus musculus	2383 DAVID IDs Check Defaults 🗹
- Use All Species - Mus musculus(2383) Canis lupus familiaris(2234 Pan troglodytes(2216)	 Gene_Ontology (3 selected) General_Annotations (0 selected) Literature (0 selected) 	
Select Species	 Main_Accessions (0 selected) Pathways (2 selected) 	

Then click "Functional annotation clustering":

281 C	luster(s)				E.	Downlo	oad File
	Annotation Cluster 1	Enrichment Score: 12.97	G		Count	P_Value	Benjamini
	UP_KEYWORDS	Mitochondrion	<u>RT</u>	=	207	4.4E-20	3.8E-18
	UP_KEYWORDS	Transit peptide	<u>RT</u>	=	111	4.6E-14	2.0E-12
	UP_SEQ_FEATURE	transit peptide:Mitochondrion	RI	a	98	6.1E-7	2.7E-3
	Annotation Cluster 2	Enrichment Score: 9.9	G		Count	P_Value	Benjamini
	UP_KEYWORDS	Transcription	RT	-	309	2.4E-18	1.5E-16
	UP_KEYWORDS	Transcription regulation	RI	-	299	9.2E-18	5.0E-16
	GOTERM_BP_DIRECT	transcription, DNA-templated	RI	-	311	4.2E-13	2.2E-9
	GOTERM_BP_DIRECT	regulation of transcription, DNA-templated	RI	-	344	1.8E-9	4.8E-6
	UP_KEYWORDS	DNA-binding	RI	-	223	2.8E-6	4.2E-5
	GOTERM_MF_DIRECT	DNA binding	RI	=	265	4.6E-6	1.1E-3
	GOTERM_MF_DIRECT	transcription factor activity, sequence- specific DNA binding	RT	=	126	2.4E-3	1.8E-1
	Annotation Cluster 3	Enrichment Score: 9.61	G		Count	P_Value	Benjamini
	UP_KEYWORDS	Metal-binding	RT		480	3.8E-14	1.8E-12
	GOTERM_MF_DIRECT	metal ion binding	RI	-	476	6.7E-10	3.6E-7

Now let's go back to the Excel file and select only those genes which have p53 at their promoters and their expression was upregulated upon treatment (log2 fold change >0):

Now submit them again to DAVID and do all the steps in DAVID as above:

122 C	luster(s)				E.	Downloa	d File
	Annotation Cluster 1	Enrichment Score: 6.94	G		Count	P_Value B	enjamini
	GOTERM_CC_DIRECT	mitochondrion	RI	=	123	4.2E-10 2.	2E-7
	UP_KEYWORDS	Mitochondrion	RI	=	81	3.6E-9 4.	1E-7
	UP_KEYWORDS	Transit peptide	RI	=	45	4.3E-7 2.	1E-5
	UP_SEQ_FEATURE	transit peptide:Mitochondrion	RI	=	40	2.8E-4 4.	0E-1
	Annotation Cluster 2	Enrichment Score: 6.01	G		Count	P_Value B	enjamini
	UP_KEYWORDS	Lysosome	RI	E	32	7.1E-9 4.	9E-7
	GOTERM_CC_DIRECT	lysosome	RI	=	38	2.2E-8 3.	0E-6
	KEGG_PATHWAY	Lysosome	RI	4	19	1.1E-5 2.	7E-3
	GOTERM_CC_DIRECT	lysosomal membrane	RI	4	22	5.5E-4 2.	6E-2
	Annotation Cluster 3	Enrichment Score: 3.85	G		Count	P_Value B	enjamini
	UP_KEYWORDS	Metal-binding	RI	-	181	1.4E-6 5.	3E-5
	GOTERM_MF_DIRECT	metal ion binding	RI	-	180	4.5E-5 2.	0E-2
	UP_KEYWORDS	Zinc	RI	=	109	7.3E-4 1.	6E-2
	UP_KEYWORDS	Zinc-finger	RI	=	79	8.9E-3 8.	.0E-2

Now let's repeat this only for the genes which contain p53 at their promoters and are downregulated upon treatment:

Fil	e Hom	ne Insert	Page Layout	Formulas	Data Reviev	v View	Acrobat							
Ĉ	Cut	Cal	libri	• 11 • A	A [•] ≡ ≡ <mark>:</mark>	>> √%	Wrap Tex	t	General	¥			÷	*
Paste	- Copy	B	ΙŪ·	- A	· = = =		🐽 Merge &	Center 🔻	∰ -%•	•.0 •.0 00. 00.	Conditional	Format Cell	Insert [Delete Format
*	Cliphoard		Fo	t	5	Alianma	ant.	5	Number	5	Formatting *	as Table * Styles *	Ŧ	Colla
	Clipboard	(FU	f TL-20		Alighthe	ent	1.4	Number			styles		Cells
	RI	• (J	Ix Itc38										
	S	Т	U	V	W	Х	Y	Z	AA	AB	AC	AD	AE	AF
1		Ttc38	0	NA	NA	NA	NA	NA						
3		Ckap2	5255.934	1.76286147	6 0.055809	31.58746	########	######	##	0.312	581			
4		Bax	35.74425	1.58450742	3 0.343422	4.613877	3.95E-06	2.37E-	05					
5		Phlda3	982.9958	1.13934763	8 0.09778	11.65215	2.24E-31	6.62E-	30					
6		Bbc3	67.78692	1.23086061	8 0.260172	4.730944	2.23E-06	1.39E-	05					
9		Zfp365	969.5262	2 27650216	0 004016	20 20575	*****	*****	##					× D
10		Traf4	1947 Cus	tom AutoFilter									8	
12		Ccdc58	4.83 She	ow rows where:										
13		Rps27l	64.9	NA										
15		Klhl26	80.	is less than		• 0								v
18		Svop	15.	And (⊜ Or									
20		Btg2	1245	<u>Anu</u>										
21		Rps19	5.16											
22		Bbc3	67.7 Use	e ? to represent a	ny single chara	oter								
24		Nudcd2	8.84 Use	e * to represent a	ny series of ch	aracters								
25	1Rik	6530418L2	31.5											
26		Trp53inp1	1053									OK	Can	3ei
27		Sesn2	1225.705	1.1608415	5 0.086759	13.38014	7.90E-41	3.31E-	39		_			
20		E+-1	1/10 0110	0 71600	1 A 1000AE	2 202026	0 0001 / 0	0 0006	70					

	Annotation Cluster 1	Enrichment Score: 4.82	G	7	Count	P_Value	Benjamini
	UP_KEYWORDS	Cell cycle	RI	—	43	1.4E-7	7.5E-6
	GOTERM_BP_DIRECT	<u>cell cycle</u>	RT	=	43	7.0E-7	1.7E-3
	UP_KEYWORDS	Cell division	RI	=	26	4.8E-5	1.4E-3
	GOTERM_BP_DIRECT	mitotic nuclear division	RI	=	22	1.1E-4	8.4E-2
	UP_KEYWORDS	Mitosis	RI	=	20	1.2E-4	3.2E-3
	GOTERM_BP_DIRECT	<u>cell division</u>	RT	=	26	1.8E-4	7.2E-2
	Annotation Cluster 2	Enrichment Score: 4.33	G	7	Count	P_Value	Benjamini
	UP_KEYWORDS	Mitochondrion	RI	—	63	2.4E-8	1.5E-6
	UP_KEYWORDS	Transit peptide	RI	=	30	2.3E-4	4.3E-3
	UP_SEQ_FEATURE	transit peptide:Mitochondrion	RI	=	26	1.8E-2	9.7E-1
	Annotation Cluster 3	Enrichment Score: 3.66	G	7	Count	P_Value	Benjamini
	UP_KEYWORDS	Protein transport	RI	=	39	9.0E-7	3.1E-5
	GOTERM_BP_DIRECT	protein transport	RI	=	39	1.0E-5	1.3E-2
	UP_KEYWORDS	Transport	RT	=	71	9.0E-3	7.5E-2
	GOTERM_BP_DIRECT	transport	RT	=	70	2.8E-2	7.9E-1
	Annotation Cluster 4	Enrichment Score: 2.75	G	7	Count	P_Value	Benjamini
	UP_KEYWORDS	Endoplasmic reticulum	RI	=	49	1.6E-4	3.5E-3
	GOTERM_CC_DIRECT	endoplasmic reticulum	RI	=	57	4.5E-3	1.1E-1
	GOTERM_CC_DIRECT	endoplasmic reticulum membrane	RT	—	34	7.8E-3	1.8E-1

Here is what we get for the downregulated p53-dependent genes:

We can see that the genes responsible for the cell cycle are downregulated after treatment. What does this mean? It means that the cells are struggling with doxorubicin-induced DNA damage and cannot enter the cell cycle. This is quite consistent with doxorubicin action leading to cell apoptosis.

A similar GO analysis can be also performed in another GO software called GOrilla

http://cbl-gorilla.cs.technion.ac.il

Gene Ontology enrichment analysis using EnrichR

Open <u>http://amp.pharm.mssm.edu/Enrichr/</u>. Then upload your BED file with all p53 peaks (peaks_formatted.bed) using the "Browse" button, select "mouse mm9", then click "submit":

0 gene(s) entered

EnrichR will calculate for you the enrichments of many different genomic features at the regions submitted in your BED file. E.g., this is the "Transcription" panel that I've got:

Interestingly, EnrichR finds p53 and p53-related features as top hits. Importantly, EnrichR does not know which experiment we are working on, it only knows the genomic coordinates of the peaks obtained after ChIP-seq. If these peaks look to EnrichR like p53 binding, then this means that our analysis is correct and our peaks indeed represent p53 binding.

Convincingly, the "Pathways" panel of EnrichR is almost completely devoted to p53 binding:

Enrichr Login Register							
Transcription Pathways Onto Description No description available (ologies Disease/Drugs Cell Typ 1000 genes)	bes Misc Legacy Crowd					
KEGG 2016	WikiPathways 2016	Reactome 2016					
p53 signaling pathway_Homo sapiens_hsa04 HTLV-I infection_Homo sapiens_hsa05166 Cell cycle_Homo sapiens_hsa04110 Ubiquitin mediated proteolysis_Homo sapie Hepatitis B_Homo sapiens_hsa05161	p53 signaling_Mus musculus_WP2902 mRNA Regulation of DNA Damage Response DNA Damage Response_Homo sapiens_WP7 TGF-beta Signaling Pathway_Homo sapiens_' PluriNetWork_Mus musculus_WP1763	TP53 Regulates Transcription of Cell Death C Transcriptional Regulation by TP53_Homo sa Cellular Senescence_Homo sapiens_R-HSA-2 DNA Repair_Hom o sapiens_R-HSA-73894 Cellular responses to stress_Homo sapiens_I					
BioCarta 2016	Humancyc 2016	NCI-Nature 2016					
Links between Pyk2 and Map Kinases_Homo Angiotensin II mediated activation of JNK Pa Keratinocyte Differentiation. Homo sapiens_ EGF Signaling Pathway_Homo sapiens_h_egf Map Kinase Inactivation of SMRT Corepresso	superpathway of pyrimidine ribonucleotides pyrimidine deoxyribonucleotide phosphoryl superpathway of pyrimidine deoxyribonucle CMP phosphorylation_Homo sapiens_PWY-7 adenosine deoxyribonucleotides de novo bio	Direct p53 effectors_Homo sapiens_67c3b75 Validated transcriptional targets of TAp63 iso Validated transcriptional targets of AP1 fami Regulation of nuclear beta catenin signaling p73 transcription factor network_Homo sapi					

We can let you play with EnrichR a bit more on your own. This is the end of the practical.

If time remains at the end, please feel free to suggest for discussion your own directions for integrative analysis, or ask the lecturers how to do the analysis for your experimental system.

We hope you enjoyed the course!