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The eukaryotic genome is organized in a chain of nucleosomes that consist of 145–147 bp of DNA
wrapped around a histone octamer protein core. Binding of transcription factors (TF) to nucleosomal
DNA is frequently impeded, which makes it a challenging task to calculate TF occupancy at a given reg-
ulatory genomic site for predicting gene expression. Here, we review methods to calculate TF binding to
DNA in the presence of nucleosomes. The main theoretical problems are (i) the computation speed that is
becoming a bottleneck when partial unwrapping of DNA from the nucleosome is considered, (ii) the per-
turbation of the binding equilibrium by the activity of ATP-dependent chromatin remodelers, which
translocate nucleosomes along the DNA, and (iii) the model parameterization from high-throughput
sequencing data and fluorescence microscopy experiments in living cells. We discuss strategies that
address these issues to efficiently compute transcription factor binding in chromatin.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Predicting gene expression from mechanistic molecular consid-
erations is a challenging subject, which currently has exact solu-
tions only for a small number of mainly prokaryotic model
systems [1–4]. However, this field is developing very fast, with
many recent studies constructing bottom-up quantitative models
of gene regulation [5–17]. Gene regulation in eukaryotes is much
more complicated due to the dynamic organization of the DNA in
chromatin, which modulates the accessibility of regulatory DNA
regions to transcription factors (TFs) [18]. Furthermore, in a human
organism tens of thousands of annotated genes exist whose
expression levels depend on each other. The resulting large combi-
natorial number of possible expression patterns makes it impossi-
ble to determine these for all combinations of concentrations of all
molecular players experimentally. However, the problem could be
solved if one succeeds in constructing a model that predicts
expression changes for individual genes as a function of TF concen-
trations and other input molecular parameters. This would be a
highly valuable achievement for both basic research as well as
medical systems biology. Accordingly, the field is rapidly expand-
ing, and currently involves two large groups of approaches: one
comprises descriptions based on biophysically formulated molecu-
lar binding models for protein arrangements along the DNA [5–17]
and the other is based on bioinformatic strategies where the rules
of gene expression are correlated to TF occupancies or histone
ll rights reserved.
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modifications by learning from large datasets without knowing
the underlying molecular mechanisms [19–22]. Here we will focus
on the first group of approaches, and specifically on one require-
ment that has to be accounted for in these types of models: the
interference of TF-DNA binding with nucleosomes at regulatory
genomic regions. We will review the main assumptions inherent
to currently used approaches. Then we will describe a theoretical
method to calculate transcription factor binding to regulatory
DNA regions and the experimental methods to determine input
parameters for such models. Finally, several examples of the imple-
mentation of this approach will be given.
2. Basic assumptions and concepts

2.1. Gene expression rate is proportional to the probability of
transcription initiation

According to the classical central dogma of molecular biology,
the genetic information encoded in the DNA is read by proteins
to produce RNA, which is translated into proteins. This dogma
has been revised multiple times during the last decades after the
discoveries of reverse transcription of RNA into DNA, RNAs with
enzymatic activities as well as non-coding regulatory RNAs and
the identification of epigenetically determined gene expression
implemented by the modifications of DNA and DNA-bound histone
proteins. Thus, instead of a linear flow of information from the DNA
to protein expression a complex regulatory network exists be-
tween DNA, RNA and proteins, which determines the readout of
i.org/10.1016/j.ymeth.2013.03.011
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the DNA sequence [23–25]. Nevertheless, the main part of the dog-
ma still holds true: the DNA is a carrier of genetic information, and
it requires proteins to read, interpret and execute the information
it encodes. The development of the final gene product depends on
many regulatory events at all stages of transcription, processing
and translation. In this sequence of events the first one is the initi-
ation of transcription. Once it has occurred, it still can be halted or
modulated by a number of other downstream regulatory events.
The critical assumption used in most theoretical works in this field
is that the rate of expression is proportional to the probability of
transcription initiation [2,4,26–31]. Although this is a significantly
simplified view, it has proved to be a reasonable approach for
many genes.

2.2. Transcription initiation depends on the promoter-enhancer
interaction

Transcription initiation is a complex process, with the main part
being the assembly of the transcription machinery including RNA
polymerase (RNAP) at the promoter [32]. The recruitment and acti-
vation of this complex depends on transcription factors (Fig. 1A).
TF binding is in many cases cooperative and/or involves competi-
tive binding of several factors to the same DNA sequence [3,33–
35]. TF binding sites can be separated from each other or clustered;
they may be proximal to transcription initiation sites or at distal
regulatory elements termed enhancers. In many cases promoter
and enhancer regions come into contact through protein-assisted
DNA looping [36], and the interaction between the pre-initiation
complex at promoter and transcription factors assembled at the
enhancer can be mediated by another large multiprotein complex
called Mediator [37]. Thus, TF arrangement at enhancers is be-
lieved to determine transcription initiation through mechanistic
interactions transmitted to RNAP. The commonly accepted view
is that promoter-enhancer interactions are always by direct
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Fig. 1. Different levels of cis-regulatory module functioning. (A) Enhancer and
promoter regions can be connected by a DNA loop bridged by transcription factors.
One of the bound proteins is RNA polymerase (RNAP), whose binding determines
the probability of transcription initiation. (B) In chromatin, both enhancer and
promoter regions might be covered by nucleosomes; some nucleosomes need to be
removed or repositioned to be compatible with TF binding, which becomes an
additional layer of regulation of the initiation of transcription.
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DNA–protein–DNA contacts (as opposed to other models that pro-
pose long-range information transmission e.g. through changes of
the DNA conformation or quantum transfer [38]). In this paradigm,
any advanced mathematical model of transcription initiation can
be in principle supported by a corresponding mechanistic picture.
The enhancer can be viewed either as a specific multicomponent
structure that forms via cooperative binding of its components
and is referred to as an ‘‘enhanceosome’’, or a flexible ‘‘billboard’’,
which is a less defined structure arising from stochastic binding
of a set of components [39]. In both cases its mathematical role
is providing a single proxy for multiple TF signals [39–43].
2.3. The probability of transcription initiation is a function of TF bound
states

In many cases the exact mechanistic details of protein–
DNA–protein complexes formed at a cis-regulatory module are
not known. However, in principle molecular details can be deter-
mined as done for the beta-interferon enhanceosome as a proto-
typic example [44]. To compute the effect on gene expression, it
is generally assumed that the expression of a given gene can be de-
scribed by some mathematical function of TF occupancies at the
enhancer and/or promoter. There have been several names for such
functions in the literature, including ‘‘regulation factors’’ [45],
‘‘logic functions’’ [46], ‘‘input functions’’ [47], ‘‘cis-regulatory input
functions’’ [48,49] and ‘‘gene-regulation functions’’ (‘‘GRF’’) [4,50],
which is the term used here. Initially, GRFs were thought to be
exclusively determined by the DNA sequence of the corresponding
cis-regulatory modules [8]. However, recent studies have shown
that GRFs are also strongly dependent on covalent histone modifi-
cations of nucleosomes covering the corresponding region [51]. In
some cases GRFs can be defined in the form of Boolean functions of
TF concentrations [47,48], linear functions of TF occupancies at
their binding sites [8] or mixed ‘‘analog’’ scenarios [52]. Recent
studies of well-defined prokaryotic systems showed that in a gen-
eral case GRFs are neither Boolean, nor linear [4,48,53]. For several
classes of promoters where the relation of RNAP recruitment and
TF binding is known it is possible to determine the nonlinear
non-Boolean gene regulation functions directly from TF binding
maps [4]. The situation becomes much more complicated when
one takes into account the nucleosomal organization of DNA in
chromatin in eukaryotes (Fig. 1B). In this case, some nucleosomes
need to be removed or repositioned to allow transcription initia-
tion complex assembly. Thus, the GRF becomes also dependent
on the nucleosome states [50]. Even with this correction, several
recent studies have challenged the classical assumption that
expression of a gene is correlated to the corresponding TF
occupancy [54]. Rather, it was proposed that in some cases GRFs
are better correlated to the changes in histone modifications than
to the changes in TF occupancies [17]. A special study devoted to
the effect on gene expression of TF arrangement versus histone
modifications has shown that TF occupancies are responsible for
short-range effects (e.g. one gene) whereas histone modifications
act more globally (genomic locus including several genes) [55]. In
any case, histone modifications are thought to work predominantly
by recruiting specific proteins, so that the GRF would be still
determined by the protein-DNA binding state of a given regulatory
module. Last but not the least, it is noted that the GRF concept as-
sumes gene expression to be at least to some extent deterministic
and not purely stochastic. The latter point might seem obvious at
the macroscopic level since organisms develop according to a
well-defined program. However, at the microscopic level this
assumption is not strictly fulfilled, and relative contributions of
stochastic/deterministic processes still have to be evaluated
quantitatively [56].
i.org/10.1016/j.ymeth.2013.03.011
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2.4. Binding maps cannot be measured for all time points, and have to
be calculated

Current high-throughput techniques allow measuring genome-
wide binding maps for a single protein in a given cell type and cell
state. In general, the binding maps determined for different cell
types do not coincide. For example, recent studies of genome-wide
binding of an insulator protein CTCF in mouse embryonic stem
cells and mouse embryonic fibroblasts have revealed that signifi-
cant differences exist with respect to the occupancy of CTCF bind-
ing sites between these two cell types [57]. The TF binding maps
depend on the protein concentration, active nucleosome reposi-
tioning and changes in large-scale chromatin accessibility. In all
three cases we have to account for TF competition with each other
and with other molecules for DNA binding. Classical types of com-
petitive binding may involve competition for overlapping and non-
overlapping binding sites, formation of DNA loops and multilayer
structures [58,59]. In addition, molecular motor activities require
the introduction of a non-equilibrium component, which still can
be integrated in the frame of quasi-equilibrium thermodynamic
models [60].

2.5. TF-DNA binding maps are calculated for equilibrium conditions

The cell nucleus is a very crowded environment and equilibra-
tion times can be as large as hours [61]. Furthermore, many DNA
binding proteins can undergo conformational changes that are dri-
ven by the hydrolysis of ATP and act as molecular motors against
the thermal equilibrium [62,63]. Nevertheless, most current meth-
ods for calculation of TF-DNA binding maps use the assumption
that the binding map can be determined from the thermodynami-
cally preferred protein-DNA contacts and the thermodynamic
competition between different protein species [1–3,64]. The use
of this assumption is justified by the following considerations: (i)
TF binding events frequently happen on a time scale of seconds
[65,66]. Thus, TF DNA occupancy is expected to be in a quasi-equi-
librium although the cell’s state might change on the hour scale,
e.g. during progressing through the cell-cycle. (ii) Similarly, the
ATP-dependent activity of chromatin remodelers that could trans-
locate nucleosomes at promoters or enhancers would lead to a
steady state of nucleosome positions at a given point of time in
the cell that can be represented by quasi-equilibrium [60,67]. It
is also noteworthy that only a small fraction of nucleosomes ap-
pears to be translocated in the absence of DNA replication or
DNA repair [63]. (iii) One can also think of a collective equilibrium
in an ensemble of many identical cells [4]. Then the binding map
nuc
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Fig. 2. Dynamic chromatin organization and TF-nucleosome competition. The DNA site is
is in a dynamic conformation with binding and dissociation of linker histones, occa
nucleosomal DNA and translocation or eviction of nucleosomes by chromatin remodele
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derived from the equilibrium assumption would represent an aver-
age pattern characteristic for many instances of the cell at different
time points.

3. Calculation of TF binding maps in chromatin

3.1. Integrating nucleosomes in thermodynamic TF binding models

The nucleosome consists of 145–147 base pairs (bp) wrapped
around the histone octamer core [68]. Without ATP-dependent
remodelers, the nucleosome residence time is in the order of 1–
2 h, which is much larger than that for a typical transcription factor
[69]. The energy of DNA-histone octamer interaction (�1 kT per
bp) is also much larger than the energy of binding for a typical
TF [70,71]. From this perspective, the nucleosome can be viewed
as almost immobile with respect to TF binding. Mathematically
that would be described by a structure that always protects 147
base pairs from binding to other proteins. A given site on the
DNA would be either nucleosome-free, or inside the nucleosome.
However, the nucleosome is actually quite a dynamic structure
[72–77] (Fig. 2). Some of the four histone dimers can be lost lead-
ing to partial nucleosome disassembly [59,78]. Alternatively, DNA
can partially unwrap from the histone octamer due to a variable
number of DNA–histone bonds [71,79,80]. The nucleosome
unwrapping model suggests two possible effects: first, transcrip-
tion factors can access the DNA inside the nucleosome, especially
close to the nucleosome entry/exit site, and second, nucleosomes
can invade the territories of each other. Both of these effects have
been observed experimentally [74,81]. Furthermore, this model
was shown to be quantitatively consistent with in vitro measure-
ments of DNA accessibility and nucleosome positioning [71].

3.2. Formulating one-dimensional DNA lattice models

Genomic DNA is packaged into chromatin in a complex 3D
structure, which is still poorly understood [82]. In particular, there
are multiple contacts between distant genomic regions mediated
by specific DNA–protein–DNA interactions [83,84]. Mathemati-
cally speaking, this property can be described as a fractal dimen-
sion [85–87]. Nevertheless, for many problems involving a single
genomic region it is useful to consider the DNA as a linear mole-
cule, characterized by a single 1D coordinate numbering the nucle-
otides or base pairs along the genome. Each nucleotide can
contribute to a potential protein–DNA contact [13,88,89]. Muta-
tions changing distances between TF binding sites at Drosophila
enhancers by several bp lead to different phenotypes [13], and sites
leosome translocation
chromatin remodeler

inhibited TF binding
to nucleosomal DNA

nucleosome with
DNA unwrapping

transcription
factor (TF)

either accessible for binding of a given TF or occluded by a nucleosome. Chromatin
sional disassembly of histone dimers from the histone octamer, unwrapping of
rs.
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Fig. 3. 1D lattice models for TF-DNA binding in the presence of nucleosomes and
other protein-DNA complexes. (A) The histone octamer is represented as a single
ligand covering up to 147 bp when completely bound. Partial bonding of histone
octamer and DNA results in unwrapping of the DNA from the nucleosome entry/exit
site. Transcription factors can bind the unwrapped DNA. (B) The forward partial
partition function is calculated left to right. (C) The reverse partial partition function
is calculated right to left. A partial partition function of the system with the bound
pink protein in the middle is given by the product of the corresponding forward and
reverse partition functions, divided by the weight of this bound protein state.

4 V.B. Teif et al. / Methods xxx (2013) xxx–xxx
of single-nucleotide polymorphism (SNP) affect differential TF
binding at regulatory regions [90]. In one-dimensional models
the DNA is considered as a lattice of base pair units numbered by
index n (Fig. 3A). Each DNA unit can be in one of several states
determined by the reversible protein binding as is typical for Ising
[91] and Markov chains [92]. We consider f types of proteins,
which can competitively bind DNA depending on the protein type
g, g = (1, f). Macroscopic protein–DNA binding constants K(n,g)
determined by the energy of protein–DNA binding depend on the
position of the binding site start along the DNA n and protein type
g. For each protein–DNA complex, it is possible to enumerate base
pairs within the binding site by index h with respect to the start of
the canonical binding site n, and correspondingly distinguish
microscopic binding constants k(n,g,h) corresponding to individual
protein–DNA bonds. The product of all microscopic binding con-
stants k(n,g,h) for a given complex gives the macroscopic binding
constant K(n,g). In principle, any DNA base pair in the sequence
may be considered to represent the start of a potential binding site
for a given protein. Proteins g1 and g2 can interact with each other
depending on the distance j along the DNA with a potential w = w(j,
g1, g2). Proteins are characterized by their corresponding binding
site sizes on the DNA, m = m(g). It is frequently assumed that the
binding site size for a given protein type is constant, e.g. a protein
covers 10 bp upon binding to the DNA and protects these 10 bp
from binding of other proteins. However, this is just a special case
of a more general situation when each binding site is characterized
by h1 unbound bp from the left and h2 unbound bp from the right
end of the binding site as shown in Fig. 3. This model becomes par-
ticularly important for large protein–DNA complexes such as the
nucleosome where it is known that partial unwrapping of DNA
from the histone octamer occurs spontaneously [71,93].

3.3. Mathematical algorithms to solve 1D lattice models

The aim of constructing 1D lattice models is to be able to predict
probabilities of all bound protein–DNA configurations. Only few of
these configurations are of particular interest, but to be able to cal-
culate their probabilities one has to know the probabilities of the
Please cite this article in press as: V.B. Teif et al., Methods (2013), http://dx.do
others. In the pseudo-equilibrium approximation, each bound con-
figuration i can be given a weight which exponentially depends on
its free energy, exp(�DGi/kBT), where DGi is the energy change cor-
responding to a given configuration of protein arrangement along
the DNA, kB is the Boltzmann constant, and T the absolute temper-
ature in Kelvin. The sum of weights of all possible configurations is
called the partition function. The straightforward way to calculate
the partition function is via sampling through all possible states of
the system. This can be done analytically for simplified systems e.g.
assuming non-specific binding [94,95] or numerically for realistic
systems confined to short DNA lattices [96,97], or systems with a
small number of known discrete binding sites of a few transcrip-
tion factors [98], such as the k-switch [27,28] or the Lac operon
[29–31]. However, if both sequence-specific and nonspecific bind-
ing to overlapping DNA sites is taken into account, calculations for
DNA regions longer than 30 bp are not feasible using this method
with currently available computers [99], and special methods are
needed to accelerate calculations [100]. These include the binary
variable method, combinatorial method, generating function
method, transfer matrix method and dynamic programming ap-
proach as reviewed elsewhere [59,93]. Many currently used ap-
proaches are based on dynamic programming algorithms for
historic reasons [93]. The dynamic programming algorithms were
initially developed in the 1970s independently by DeLisi and Gur-
skii and Zasedatelev [101–104] and for some time used only by
specialists interested in theoretical aspects of such models [105–
107]. Then they were almost forgotten, and recently have become
very popular again in applied science, particularly in the nucleo-
some positioning and TF binding fields [8,12,108–116]. A first dy-
namic programming method to calculate TF-DNA binding taking
into account the possibility of partial nucleosome unwrapping
was developed in our recent publication [93]. In the dynamic pro-
gramming approach, the partition function Z for a DNA of length N
can be calculated recurrently if partition functions for smaller lat-
tices are known using recurrent algorithm [93] (see Appendix).
Alternatively, the transfer matrix method could be used [71]. As
a result, one gets the partition function Z, which allows calculating
the probability P(n, g, h1, h2) that a protein of type g is bound start-
ing at site n, leaving on the left and right sides correspondingly h1

and h2 unbound contacts with respect to its canonical binding site
length m(g). The critical parameters in the modeling is c0(g), the
free concentration of the protein of type g, K(n,g), the binding con-
stant of the corresponding protein, and protein–protein interaction
potentials w(j, g1, g2). To account for the possibility of partial nucle-
osome unwrapping, the macroscopic binding constant K⁄ for the
protein (or the histone octamer) whose first contact with DNA
starts at position n is defined in dependence of the number of
formed bonds as a function of n, m(g), g, h1, h2:

K� ¼ Kðn; g; h1;h2Þ ¼
YmðgÞ�h2

h¼h1þ1
kðnþ h� h1 � 1; g;hÞ; ð1Þ

where k is the microscopic binding constant for the protein–DNA
bond at position i with respect to the start of the completely bound
protein binding site. In practice, it is impossible to determine all
probabilities P(n, g, h1, h2) experimentally. What is usually reported
in the experiments is the occupancy of a given base pair by a given
protein type. The probability that a specific DNA base pair is occu-
pied by the protein of type g is

Cðn; gÞ ¼
Xf

g¼1

XmðgÞ�1

h1¼0

XmðgÞ�h1�1

h2¼0

Xn

i¼n�mðgÞþh1þh2þ1

Pði; g;h1; h2Þ ð2Þ

Many experimental papers also report the value of the nucleo-
some dyad density as a function of position along the DNA. This is
equivalent to the probability that a given DNA unit is bound by the
middle of the protein according to
i.org/10.1016/j.ymeth.2013.03.011
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Pcenterðn; gÞ ¼
Xf

g¼1

XmðgÞ�1

h1¼0

XmðgÞ�h1�1

h2¼0

P n� Int½ðmðgÞ � h1 � h2Þ=2�; g;h1; h2ð Þ

ð3Þ

where Int is the integer part of the corresponding expression. These
equations allow calculating TF binding maps in the presence of
nucleosomes and taking nucleosome unwrapping into account. An
implementation of this algorithm in a program called ‘‘TFnuc’’ will
be made available online at http://generegulation.info. While this
is a powerful method, its application requires the proper choice of
input parameters (binding affinities, concentrations, interaction
potentials) to yield meaningful results. The next chapters discuss
strategies for obtaining these parameters.
4. Determining binding affinities from high-throughput
sequencing experiments

4.1. Estimating relative TF binding constants

Recent developments in high-throughput microarray-based and
sequencing-based methods allow measuring protein binding maps
for a complete genome in a single experiment [117]. Having such
an experimental binding map, one can extract protein–DNA se-
quence preferences. Some proteins are more specific, recognizing
just a single motif and some minor variation of it. For this class
of proteins binding affinities are usually characterized by position
weight matrices (PWM). It is assumed that each nucleotide within
the binding site adds an independent contribution to the binding
energy [118–120]. For many transcription factors, position weight
matrices are available via databases such as FlyTF [121], JASPAR
A

Fig. 4. Schematic representation of the ChIP-Seq and MNase-Seq workflow to determine
extracted from the cell nucleus, sonicated into short fragments and immunoprecipitate
segments associated with the target protein are mapped, which results in sharp peaks fo
identified with peak-calling algorithms and used for TF binding DNA motif discovery. (B)
to remove the linker DNA between nucleosomes. Subsequently, the remaining nucleos
sequencing setup exact positions of individual nucleosomes with some overlapping p
normalized number of individual nucleosome reads covering a given DNA position.
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[122] and TRANSFAC [123]. Several methods exist to convert
PWMs into protein binding affinities [115,124–126]. However,
some TFs can recognize many different motifs, and binding prefer-
ences can also be influenced by dependencies of neighboring
nucleotides. In this case storing binding affinities in the form of
weight matrices becomes an ineffective strategy. Until recently,
TF binding motifs have been commonly determined in vitro by pro-
tein-binding microarrays, but this method is limited by the num-
ber of represented sequences on the microarray, which are
usually not longer than 10 bp [127]. In general, microarray-based
methods such as SELEX (systematic evolution of ligands by expo-
nential enrichment) only return relative affinity values [128]. Such
values, e.g. from the HTPSELEX database [129], can be technically
stored in a genome-wide affinity profile file and sequentially read
as input to feed them into Eq. 1 calculating the corresponding
binding constant for each window of length m(g) on the DNA. With
high-throughput SELEX (HT-SELEX) [130], DNA fragments with a
randomized 10 bp sequence are incubated with TFs and then pro-
tein–DNA complexes are purified and eventually sequenced using
deep sequencing protocols [130]. When comparing the number
of initial DNA fragments with TF-enriched sequences after
sequencing, one can calculate the probability of binding to a partic-
ular 10 bp region. Using certain assumption, it is possible to calcu-
late the free energy for each sequence depending on read statistics
and estimations for the energy contribution of each nucleotide
using the PMW energy model [130]. A recent study showed that
absolute dissociation constants of fluorescently labeled TFs to
immobilized DNA clusters can be obtained from next generation
sequencing data by plotting the signal intensity of the TFs with
increasing TF concentrations [131]. This method can also resolve
interdependencies of nucleotides for transcription factor binding,
B

genome-wide TF and nucleosome occupancy profiles. (A) ChIP-Seq. The chromatin is
d using antibodies specific to the chromatin protein of interest. The resulting DNA
r proteins that realize specific binding to well-defined binding sites. The peaks are

MNase-Seq. The chromatin is extracted from the cell nucleus and digested by MNase
omal DNA is sequenced and mapped to the reference genome. In the paired-end
ositions due to sample heterogeneity. The nucleosome occupancy is defined as a
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which is valuable information when calculating transcription fac-
tor binding probabilities. To identify binding sites that are func-
tionally relevant in vivo, a ChIP-seq analysis of TF binding sites in
a cell is informative (Fig. 4A). Binding maps derived by this method
account for the chromatin organization, since nucleosome posi-
tions are implicitly taken into account [132]. When the resultant
TF binding maps are compared to nucleosome binding maps deter-
mined by MNase-seq for the same cell type it becomes apparent
that many TFs are preferentially bound to the linker DNA regions
between nucleosomes. Importantly, extracting enriched binding
sites with peak calling algorithms leads in many cases to the loss
of information about the occupancy level of individual peaks.
Therefore, the weighted sum of enriched fragments has been pro-
posed as a measure for relative TF binding affinity and it has been
shown that gene expression predictions can be made with im-
proved precision when the weighted sum also depends on the
proximity to a TSS [19]. Particularly accurate in vivo binding sites
at single nucleotide resolution can also be also obtained with the
ChIP-exo method [133]. Applications of this method showed that
not all consensus sequences previously described in in vitro exper-
iments were occupied. Clusters of poor consensus sequences were
also bound and utilized by TFs to initiate transcription [133]. It has
to be noted that ChIP-seq based methods rely on the availability of
good antibodies, and both direct binding of transcription factors to
DNA and indirect association via other factors/complexes are cap-
tured. Importantly, the common assumption that ChIP-seq peak
heights reflect relative binding affinity might not always be true,
since other factors may influence the amount of immunoprecipi-
tated DNA, including the formation of protein complexes that have
different exposure of the epitope used in ChIP-seq, as well as the
level of chromatin packing affecting the representation of a given
genomic fragment in the input material after digestion [134]. Thus,
a combination of in vitro and in vivo methods is needed to retrieve
quantitative data of functionally relevant direct and indirect bind-
ing sites.

4.2. Experimental determination of cell-type dependent nucleosome
occupancies

A similar strategy as with TF-DNA affinities can also be applied
to estimate the affinity of the histone octamer to any DNA se-
quence [110,135–137]. Several web servers already exist for calcu-
lating affinities of the histone core particle to an arbitrary DNA
sequence [110,138–141]. Recent advancements in high-through-
put sequencing methods allowed genome-wide mapping of indi-
vidual nucleosomes at single base pair resolution [142,143], with
yeast serving as a model system for the initial pioneering studies
[110,136,144]. Further studies showed that nucleosome positions
in different cell types of the same organism differ [145–152]. As
with any protein-DNA binding, nucleosome positioning is deter-
mined by several contributions including the intrinsic histone-
DNA preferences, competition with non-histone proteins for DNA
binding, and the action of ATP-dependent molecular motors [60].
The relative roles of these contributions are still under discussions,
but all of them seem to be relevant. A typical experiment for the
determination of genome-wide nucleosome positions is currently
based on chromatin extraction from the cell nucleus, digestion of
chromatin with MNase (or alternatively, by sonication combined
with exonucleases) to obtain mononucleosomes, followed by the
purification from proteins and RNA, and subsequent submission
of obtained segments of nucleosomal DNA for high-throughput
sequencing (Fig. 4B). Paired-end sequencing is the method of
choice since it allows exact mapping of both ends of the nucleo-
somal DNA to the reference genome without any assumptions.
The results of the MNase-seq experiment usually yield a somewhat
fuzzy picture. A nucleosome is almost never strictly positioned at
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exactly the same position in all cells of the same type due to cell
heterogeneity and due to the intrinsic nucleosome property to
‘‘breath’’ by unwrapping/rewrapping the DNA at the ends. Accord-
ingly, the most informative parameter to describe such a nucleo-
some distribution is the nucleosome occupancy, i.e. the
probability that a given DNA base pair is occupied by the nucleo-
some. Obtained nucleosome occupancy profiles strongly depend
on the level of chromatin digestion, which can be used as a titra-
tion parameter [153]. Finally, nucleosome occupancy at position i
can be determined from the experimental data according to Eq. 4
(Fig. 4B)

CðiÞ ¼
X

j

Iðnj 6 i 6 sjÞ ð4Þ

where I is an indicator function defined as follows: I(condition)=1 if
condition is satisfied, 0 otherwise; index j numbers individual
nucleosome reads (current generation high-throughput experi-
ments can provide up to two hundred millions of paired-end reads
per sequencing run). The parameters nj and sj correspond to the
mapped start and end of each individual nucleosome read after
paired-end sequencing. Experimental data obtained with the help
of Eq. 4 can be then normalized to the total number of reads per
base pair and directly compared to the theoretical occupancy distri-
bution calculated by Eq. 2.

If exact borders of nucleosomes are not known (e.g. due to the
use of single-end sequencing) one usually determines the nucleo-
some dyad distribution, i.e. the probability that the nucleosome
centre is at a given position along the genome. The latter can be di-
rectly compared to the theoretically calculated distribution given
by Eq. 3. In the absence of information about exact nucleosome
boundaries, nucleosome start site maps (or dyad maps) can be con-
verted to nucleosome occupancy maps assuming that the nucleo-
some consists of m base pairs and cannot unwrap, using the
following approximation [60].

n 6 m;CðnÞ ¼
Xn

k¼1

PðkÞ ð5Þ

n < m; PðnÞ ¼ CðnÞ �
Xn�1

k¼1

PðkÞ; Pð1Þ ¼ Cð1Þ ð6Þ

m < n;N;CðnÞ ¼
Xn

k¼n�mþ1

PðkÞ ð7Þ

m� n 6 N �mþ 1; PðnÞ ¼ CðnÞ �
Xn�1

k¼n�mþ1

PðkÞ ð8Þ

where the probability that the DNA unit n is covered by a nucleo-
some is referred to as C(n) and the probability that a nucleosome
starts at a DNA unit n as P(n). It is noted that the single-end
sequencing approach introduces additional errors that arise be-
cause a certain length of the nucleosomal DNA has to be assumed.
Although it is well established from crystal structure analysis that
the nucleosome core particle contains 145–147 bp, the fragment
length obtained by MNase digestion is much more heterogeneous
and typically ranges from 120 to 180 bp, depending on the digestion
conditions. In addition, the linker histone H1 binds to the DNA at
the entry-exit site of the nucleosome and protects an additional
�20 bp. Accordingly, the footprint of a nucleosome with bound
H1 is typically larger than 160 bp.

5. Absolute chromatin binding affinities derived from
fluorescence microscopy based methods in living cells

As described above, high-throughput methods can yield gen-
ome-wide occupancy profiles for nucleosomes, TFs or other
i.org/10.1016/j.ymeth.2013.03.011
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chromatin proteins. However, these profiles usually provide only
relative binding affinities. Thus, the information on the competitive
binding of two proteins for the same sequence cannot be derived
from this type of data. Moreover, phenomena like cooperative
binding or stabilization of chromatin loops that influence the GRF
as described above depend on the interaction strength between
chromatin-associated proteins, which cannot be derived from
occupancy profiles. As discussed in several excellent reviews
molecular details and interaction parameters can be obtained from
in vitro studies [154,155,34,156]. These provide an approach to
quantify the competitive binding of two proteins to DNA or recon-
stituted nucleosomes and to each other. However, although these
experiments provide valuable information, it is usually very diffi-
cult to relate these data to the situation in the highly crowed envi-
ronment of the cell nucleus and chromatin organization that is
certainly different from that of an in vitro reconstituted nucleo-
some. Thus, the relevant binding parameters need to be deter-
mined in living cells. Strategies to accomplish this via
quantitative fluorescence microscopy based techniques will be dis-
cussed in the following. As depicted in Fig. 5, several complemen-
tary approaches exist to measure the interaction between
fluorescently labeled proteins or labeled proteins and chromatin.
Compared to biochemical methods, these techniques are non-inva-
sive and can work without perturbing the cell. The caveat, how-
ever, is that they require expression of fluorescently tagged
proteins, which in some instances might lead to interaction affini-
ties that are different from those of the endogenous proteins. Thus,
it needs to be confirmed that the fluorescent tag has no effect on
the properties to be measured. The choice of the specific method
depends on the mobility and the size of the proteins under study.
To determine the affinity between a protein and a DNA sequence of
interest one would ideally measure this interaction on a single-
molecule level. However, this is on the one hand not always
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Fig. 5. Fluorescence fluctuation microscopy methods used to measure protein-chrom
prominent mobility imaging techniques such as Single Particle Tracking (SPT), Fluor
Spectroscopy (FCS/FCCS) and Fluorescence Resonance Energy Transfer (FRET) are illus
sequence of microscopy images to determine its mobility. While the particle is bound to c
well as the kinetic rate constants. In FRAP, fluorescent particles within a large region a
recorded over time. The shape of the recovery curve encodes information about the chrom
time scale can be quantitated by FCS from an autocorrelation analysis of the intensity flu
volume. In FCCS, the presence of two differently labeled proteins is assessed over time, an
correlation function) is used as readout for their interaction. Finally, the presence of FRET
(typically less than 8–10 nm) due to their interaction.
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possible and on the other hand very laborious if lots of different
DNA sequences are to be measured. Thus, an alternative strategy
is to determine the affinity of the protein to an average DNA se-
quence by measuring at randomly chosen positions within the cell.
This value together with the relative affinities from high-through-
put experiments allows for estimating the absolute affinity profile
of the protein. In addition, the interaction between transient chro-
matin-binders is relevant for calculating the binding cooperativity
they exhibit on the DNA as well as for estimating their propensity
to stabilize higher-order chromatin structures. Such structures
may include chromatin loops at promoter regions or multilayer
structures that have a direct impact on the GRF as mentioned
above. The following methods are the most prominent ones used
to determine such protein–DNA–protein interactions in living cells.

5.1. Fluorescence Resonance Energy Transfer (FRET)

Fluorescence Resonance Energy Transfer (FRET) is a convenient
tool to test whether two proteins interact directly with each other.
Non-radiative energy transfer in FRET occurs between two spec-
trally suitable fluorophores with distinct fluorescence excitation
and emission characteristics. Upon excitation of the ‘‘donor’’, the
absorbed energy can be emitted either via fluorescence emission
or via non-radiative FRET if a suitable ‘‘acceptor’’ is present within
a distance of up to 10 nm. In this case, the acceptor is excited by
the donor and emits light according to its characteristic emission
spectrum. The efficiency of this process is inversely related to the
6th power of the distance between the two fluorescently labeled
proteins so that interactions on the molecular level can be de-
tected. If no FRET is observed, the interpretation is not straightfor-
ward since negative results can occur for different reasons. These
include a too large spatial distance or a mostly perpendicular ori-
entation of the two fluorophores’ transition dipole moments. To
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extract binding affinities using FRET, the size of the interacting and
non-interacting pools as well as the FRET efficiency have to be
determined. Since the latter parameter depends on the orientation
of the two fluorophores, i.e. the composition and geometry of a
complex, it is difficult to construct appropriate controls for quanti-
tative interpretations. However, estimates for relative affinities can
be readily obtained both in live cells and in vitro [157,158]. More-
over, FRET measurements in conjunction with microinjection pro-
vide access to additional protein interaction parameters like the
association rate [159]. Importantly, FRET can be used to study
the interaction of a transcription factor or another mobile protein
with chromatin. To this end, chromatin is labeled via incorporation
of a fluorescent histone [160] or by labeling the DNA with a fluo-
rescent dye [161]. As discussed above, high FRET efficiencies are
indicative of strong interactions and allow for the calculation of
relative binding affinities to ‘‘average’’ chromatin. There are con-
ceptually two possibilities to assess the interaction with a particu-
lar DNA sequence or chromatin region in living cells. If the
sequence can be easily located in microscopy images, e.g. the mur-
ine pericentric sequences in the dense chromocenters of mouse
cells, the measurement can simply be performed at the desired
location. Otherwise, i.e. for all non-repetitive and non-macroscopic
sequences, a sensor protein binding to the sequence/region of
interest could be used as FRET counterpart. A critical requirement
for such an experiment would be that the sensor does not directly
bind to the protein of interest.

5.2. Fluorescence Recovery After Photobleaching (FRAP)

FRAP is a method to measure the mobility of a protein moving
in the cell. Since binding interactions with the rather immobile
chromatin network reduce protein’s mobility, the mobility and
binding strength are inversely correlated. There are sophisticated
reaction–diffusion models to extract pseudo-association and disso-
ciation rates from FRAP recovery curves [162,163], which can be
used to estimate the binding affinity if the substrate concentration
is known. Due to the inherently limited spatial resolution, such
experiments typically yield the interaction behavior with an aver-
age site on chromatin. However, if macroscopic amounts of repet-
itive binding sites are used FRAP can also measure the interaction
between a transcription factor and a distinct DNA sequence
[164,165]. Both types of measurements can be useful to convert
occupancy profiles into absolute affinities. For example, FRAP
was used to determine the dissociation constant of the glucocorti-
coid receptor at a tandem array of mouse mammary tumor virus
promoter sites, yielding a value of about 100 nM [166].

5.3. Fluorescent Two-Hybrid Assay (F2H)

A convenient way to study the interaction of two nuclear pro-
teins is the Fluorescent Two-Hybrid Assay [167] that has been ap-
plied in a recent study to dissect protein interactions at telomeres
[168]. One of the two proteins tagged with Green Fluorescent Pro-
tein (GFP) is recruited to a macroscopic array of lacO sites on the
DNA that can readily be identified within a microscopy image.
The interaction with a second protein tagged with red fluorescent
protein (RFP) is read-out by testing for colocalization at the array in
both color channels. In the presence of an interaction, both pro-
teins are at the array; in the absence of an interaction (or for very
weak interaction) only the recruited protein is detected. The main
advantage of the assay is that it can easily be implemented using
standard microscopy hardware and that it typically does not give
false-positive results if spectral cross talk is avoided. However, lacO
arrays are typically constructed with a high density of binding
sites, accommodating large numbers of recruited proteins in direct
proximity. If one of the proteins of interest is incorporated into
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large complexes, it has to be ensured that the steric requirements
are compatible with the local constraints of the protein-bound lacO
array. To obtain semi-quantitative information from F2H experi-
ments, the fluorescence intensity at the array and in the rest of
the nucleus can be used to estimate the size of the free and bound
fractions, from which the affinity can be deduced if the endogenous
protein concentrations are known. A prerequisite for such an anal-
ysis is to exclude quenching or saturation effects, which might not
always be trivial. Although F2H has to our knowledge not been
used for quantitative studies so far, it should be suitable for deter-
mining the binding affinity between two proteins if the conditions
mentioned above are met.

5.4. Fluorescence Correlation Spectroscopy

An elegant approach to detect the interaction between proteins
is Fluorescence (Cross) Correlation Spectroscopy with one or two-
color labels (FCS/FCCS). In particular the ability to detect low con-
centrations of multimeric complexes in solution makes FCCS an
attractive method. It does not require recruitment to an artificial
array but works with two species of fluorescently proteins only
[169]. As opposed to FRET, the orientation of the two proteins in
their complex(es) has no impact on the measurement. FCCS relies
on the correlation of the presence of the two labeled proteins in the
microscope’s focus over time, i.e. it measures if both proteins enter
or leave the focus together or independently. Since both the total
and the interacting protein species are measured with single mol-
ecule sensitivity, conclusions about the affinity of the complex can
be made if the endogenous concentrations of the proteins are
known. This is a major advantage with respect to many other
methods since quantitative evaluation typically requires an exten-
sive calibration procedure, which is not the case here. However,
appropriate controls have to be used to account for aberrations
in the optical setup or maturation problems of the fluorophores
[170]. As an example, the affinity between the small Rho-GTPase
Cdc42 and the actin-binding scaffolding protein IQGAP1 was suc-
cessfully measured in living zebrafish embryos and cultured mam-
malian cells using FCCS [171].

5.5. Single Particle Tracking (SPT)

Another way to exploit the connection between the mobility
and the binding affinity of a transcription factor is single particle
tracking. Here, the protein of interest is expressed in very low con-
centrations and individual molecules are imaged and followed over
time. Under certain conditions, one can deduce the binding affinity
to the target site from such time-series, as shown for the lac
repressor binding to its lac operator target site [172]. This approach
works best for low concentrations of transcription factors and
binding sites since the spatial resolution is inherently limited by
the microscope.
6. Insight in molecular details of transcription regulation from
model systems

6.1. Lessons learned from the prokaryotic world

Many paradigms in this field have been developed using a lim-
ited number of relatively well-understood model systems. In the
studies of prokaryotes, the phage k-switch [27,28] and the Lac op-
eron [29–31] served as model systems for many years. The k-
switch model revealed that direct competition between the two
transcription factors CI and Cro and RNAP can regulate activa-
tion/repression of two neighboring promoters PR and PRM that
determine the fate of the Escherichia. coli bacteria invaded by
i.org/10.1016/j.ymeth.2013.03.011
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bacteriophage k. Most energetic parameters characterizing pro-
tein-DNA and protein–protein binding at the k-switch promoter
region have been determined experimentally, which allowed con-
structing many quantitative models. Interestingly, our understand-
ing of this well-defined system is being constantly refined. One
refinement was the discovery of a DNA loop between the PR–PRM

region and a distant PL region. The loop energy was measured
and the structure of CI multimer holding the loop was character-
ized, allowing the quantitative agreement with the experiment of
an updated model [173,174]. Another refinement to the classical
k-switch model came when the significant role of nonspecific pro-
tein binding was pointed out in addition to the specific binding to
their recognition sites [175]. An additional refinement to the model
was the introduction of the distant-dependent interference be-
tween RNAPs bound to adjacent promoters. This interaction was
quantified with the help of the long-range interaction potential
w(j, RNAP, RNAP), and it appeared that this interaction shapes
the GRF of a given cis-regulatory module to make it more digital-
like [4,58]. Yet, studies of the k-switch indicate that we are perhaps
still missing some details in the complete understanding of this
system [176]. Similarly to the k-switch, the classical Lac repressor
system also taught as important lessons about regulation of tran-
scription initiation through TF competition and cooperativity. Re-
cent conceptual insight was obtained from this system with
respect to long-range cooperativity between DNA-bound TFs due
to protein-induced DNA looping [177]. It was known for a long
time that protein binding sites separated by n x 10 bp along the
DNA appear on one side of the double helix and therefore exhibit
higher cooperativity in protein binding. In addition, this study also
characterized the intermediate distances so that the interaction
potential can now be quantified with a continuous distance-depen-
dent potential w(j, g1, g2).

6.2. TF interference with nucleosomes at eukaryotic regulatory regions

Similar to the prokaryotic studies, in eukaryotes there are also
several systems that have been well-defined at the molecular level
and studied for a long time, e.g. the IFN-b enhanceosome formation
[178], Epstein-Barr virus promoter activation [179] and yeast
PHO5 promoter [50]. The Epstein–Barr virus promoter activation
was perhaps the first theoretical model that addressed transcrip-
tion initiation in a eukaryotic system explicitly considering multi-
protein combinatorial assembly [179], but this model did not take
nucleosomes into account. The difference from the prokaryotic
analogues was simply in the number of TF binding sites that are in-
volved in the cooperative interaction with the pre-initiation com-
plex. The introduction of nucleosomes in this type of models is
illustrated by the recent study of the yeast PHO5 promoter [50].
In this case, binding site occupancy by the nucleosome was consid-
ered in a binary way: as occupied or not occupied. This allowed
getting quantitative agreement with the experimentally measured
expression for this system. However, as noted in many molecular
studies, nucleosome removal is usually not a binary process, with
nucleosomes either being continuously unwrapped [71,79,80] or
moved by a remodeler along the DNA in small steps such as
10 bp [60,180], so that a binary description is in general not ade-
quate. Accordingly, several theoretical models have been proposed
to include continuous nucleosome competition with TFs in the
description of transcription initiation [58–60,71,79,80,181,108].
The practical use of such models is currently limited by the ab-
sence of suitable biological systems, which are characterized well
enough to set input values for Eqs. 1–4 with the affinities and con-
centrations for histone and non-histone proteins. Mathematical
approaches including fitting of the missing values can help
[8,12], but should be used with care to avoid over-fitting (the more
unknown parameters are in the model, the easier it is to find a
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satisfactory parameter set, but it is much more difficult to derive
a biologically relevant physical model). On the other hand, the con-
tinuous increase of high-throughput genome-wide datasets for a
limited set of model systems (e.g. Drosophila embryonic develop-
ment, human T-cell activation, mouse embryonic stem cell differ-
entiation) promises more well-defined genomic modules suitable
for the complete bottom-up description. Meanwhile, it is instruc-
tive to decipher some general mechanisms that are characteristic
for eukaryotes and have not been observed previously in the pro-
karyotic studies. One such mechanism is the cooperativity between
transcription factors mediated by nucleosomes.

In 2008, Segal and coauthors concluded their computational
analysis of the experimental Drosophila development data with
the following statement: ‘‘We do not know how [transcription fac-
tor binding] cooperativity is achieved mechanistically – by homo-
typic protein–protein interactions, transcriptional synergy, or
perhaps competition with nucleosomes – but the similar narrow
range within which the clustering occurs for most factors suggests
a general common mechanism’’ [8]. The source of this cooperativ-
ity still has not been identified. The characteristic distance for such
interactions is�50 bp, and therefore several computational models
just use the corresponding interaction potential, derived from fit-
ting the experimental data [12]. An attractive possibility suggested
by this characteristic length is that this cooperativity is mediated
by the nucleosomes [182]. We recently developed a quantitative
model for TF-nucleosome interference using the concept of partial
nucleosome unwrapping that is described by Eqs. 1–4, and tested it
on the experimental dataset by Fakhouri et al. [13]. This dataset is
particularly interesting because the authors have looked at enhan-
cer-promoter cross-talk involved in Drosophila embryonic devel-
opment by varying the distance between binding sites for a
repressor/activator transcription regulation module. The binding
sites themselves were not altered, and the promoter regions re-
mained intact. The authors observed that gene expression followed
a complex nonlinear dependence as a function of the distance be-
tween the repressor and activator binding sites: the repressor effi-
ciency was high at small separations �5 bp, low around 30 bp,
reached a maximum at 50–60 bp, and decreased at larger dis-
tances. Such distances are large enough to rule out direct pro-
tein–protein interactions. On the other hand, these distances are
too small to be accounted for by usual DNA looping, which has a
characteristic length of �500 bp [183]. Moreover, the experimental
dependence did not reveal a 10-bp periodicity characteristic for
prokaryotes [177]. Therefore, to explain distance-dependent coop-
erativity at these distances we are only left with nucleosomes or
other complexes geometrically resembling the nucleosome such
as the enhanceosome. Indeed, our calculations showed that the
nonlinear distance-dependent behavior can be quantitatively ex-
plained when TF-nucleosome competition is considered and the
nucleosome unwrapping is taken into account [80]. This mecha-
nism would explain evolutionary clustering of TF binding sites at
the regulatory regions with characteristic 60–80 bp distances
[184,185]. Of course there is still no direct proof that this mecha-
nism is really in operation and more direct molecular experiments
are required to solve this issue [186].

6.3. ATP-dependent nucleosome repositioning

Another important feature specific to eukaryotic systems is the
contribution of ATP-dependent chromatin remodelers to gene reg-
ulation. Pioneering high-throughput experiments in yeast showed
that genomic nucleosome positions are highly correlated with pre-
ferred nucleosome positions on the same DNA sequences in vitro
[110]. This suggested that nucleosome arrangement in vivo might
be primarily governed by intrinsic preferences of histone octamers
to DNA at a thermodynamic equilibrium. Subsequently, it was
i.org/10.1016/j.ymeth.2013.03.011
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shown that an ATP dependent activity, most likely that of chroma-
tin remodelers, is needed to establish the nucleosome positioning
pattern found in the cell and that this can override DNA intrinsic
positioning [187]. Nucleosome occupancy profiles around genomic
barriers such as the insulator CTCF proteins or transcription start
sites have pronounced oscillatory patterns [188–190]. These are
very typical for reversibly binding ligands equilibrated in the pres-
ence of a boundary on the DNA [96,191]. Using the assumption of
reversible equilibrium binding of histone octamers allowed quan-
titatively explaining oscillatory nucleosome patterns around geno-
mic barriers without the need of introducing ATP-dependent
chromatin remodelers [192,193]. This has led to the view that
the oscillatory nucleosome occupancy patterns around genomic
barriers arise simply due to statistical positioning [191]. However,
as we have demonstrated theoretically, very similar periodic oscil-
latory of nucleosome occupancy around a boundary can also be the
result of the activity of nonspecific nucleosome translocations due
to chromatin remodeling activity [60]. By taking into account both
the sequence-specific histone preferences and ATP-dependent
remodeler activities it is predicted that one role of nonspecific
chromatin remodelers is to distribute nucleosomes with equal
spaces. Several other models have been developed that account
for the remodeler’s ability to evenly space nucleosomes [194]. It
is noted that the oscillatory nucleosome patterns around transcrip-
tion start sites observed in vivo were absent for the same DNA se-
quences in vitro in the absence of chromatin remodelers or the
absence of ATP, while addition of remodelers plus ATP re-estab-
lished the oscillatory nucleosome pattern [187]. Thus, remodeler
activity appears to be essential for nucleosome positioning in the
cell. Methodologically, remodeler activity can be taken into ac-
count either (i) as a dynamic redistribution according to the rem-
odeler rules of the equilibrated binding map determined by the
nucleosome/TF competition, or (ii) as a cell-type dependent refine-
ment to the intrinsic histone-DNA affinities, followed by the equil-
ibration of histone octamers with competitively binding TFs [60].
The first option is biophysically better defined, but it requires the
definition of remodeler activity rules for different classes of remo-
delers. This is difficult to do even with sophisticated experiments
like knock-out or recruitment of specific remodelers
[150,151,195]. The second option provides less mechanistic in-
sight, but allows effectively characterizing different cell states by
histone-DNA preferences, which already take into account remo-
deler action, and then proceed with the calculation of TF binding
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maps according to Eqs. 1–7. Future studies will show which of
these methods is more suited for the quantitative description of
eukaryotic gene regulation.
7. Conclusions

In higher eukaryotes, specific cell types and tissues are estab-
lished from the same DNA via different protein–DNA binding pat-
terns that determine gene expression. These patterns correspond
to distinct chromatin states that are maintained via a complex epi-
genetic network that includes DNA methylation and histone mod-
ifications and can be transmitted through cell division.
Accordingly, it is essential to consider the chromatin state for the
computation of TF binding maps at regulatory elements like
enhancers and promoters to predict gene expression. As discussed
here, an essential step towards this goal is to include the nucleo-
some in the calculation of TF binding maps at thermodynamic
equilibrium conditions. Protein concentrations, binding affinities
and long-range interaction potentials are needed as input parame-
ters for such calculations (Fig. 6). Here, we have discussed how
these parameters can be obtained using high-throughput sequenc-
ing experiments in combination with fluorescence microscopy in
living cells. Being able to calculate TF occupancy in the presence
of nucleosomes more accurately is an important advancement.
However, it is also clear that in general it is not possible to reliably
predict gene expression from molecular binding events with the
current experimental datasets and theoretical methods. Taking
into account the ever-growing amount of experimental data, it
seems that the bottleneck will be on the theoretical side. A crucial
step is the computation speed when considering TF-nucleosome
competition and partial nucleosome unwrapping. We showed
how this issue can be addressed with novel faster algorithms
[93]. A second challenge is the incorporation of ATP-dependent
remodeler activities. As discussed in Section 6.3, this problem also
has conceptual solutions that can help constructing quantitative
models for gene regulation at new levels. Finally, nucleosome-
dependent gene regulation is realized not only through nucleo-
some translocations and dissociation/unwrapping, but also
through covalent histone modifications. These are accounted for
by equation 1 through the use of the microscopic binding constants
k(n, g, h). Thus, introducing histone modifications changes the his-
tone octamer binding constant through the change of the
i.org/10.1016/j.ymeth.2013.03.011
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nucleosome type g, and through the change of the unwrapping
potential (dependence of k on the unwrapping length h). Further-
more, the interaction energy of the corresponding nucleosome
with nucleosome-binding proteins also changes depending on g.
Given that there are several dozens of known histone modifica-
tions and histone variants and a huge number of their combina-
tions [196], the amount of nucleosome types is tremendous. As
with protein binding it is impossible to determine maps for all
histone modification states experimentally for all cell states. Thus,
one of the current challenges is it to identify a manageable subset
of histone modifications that needs to be taken into account, derive
a method of predicting its changes from the protein arrangements
and to combine calculation of protein binding maps with the
calculation of the corresponding changes in histone modifications.
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Appendix A.

Dynamic programming algorithm to calculate TF-DNA binding
probabilities for chromatin taking into account partial nucleosome
unwrapping.

In order to calculate probabilities of TF-DNA binding in Eq. 1,
one needs to know the partition function of the system. This calcu-
lation becomes non-trivial when partial nucleosome unwrapping is
considered. The corresponding calculation strategy using the trans-
fer matrix formalism has been described elsewhere [71]. An equiv-
alent approach is also available in the frame of the dynamic
programming approach [93]. In the latter study, the algorithm
was derived only in is the case of homotypic interactions between
DNA-bound TFs (when the TF-TF interaction potential depends on
the distance but does not depend on the TF type). Here, the exten-
sion of this algorithm is described that allows calculations for the
general case of heterotypic TF-TF interactions.

Let us consider the genomic region of length N, with index n
numbering the first bp covered by a protein of type g, and index
s numbering the last bp covered by a protein of type g
(s = n + m(g) - h1 - h2 - 1) (Fig. 3). Then the partition function Z
for a DNA of length s can be calculated recurrently according to
Eq. A1:

Zs ¼ Zs�1 þ
Xf

g¼1

XmðgÞ�1

h1¼0

XmðgÞ�h1�1

h2¼0

c0ðgÞZs�mðgÞþh1þh2�V�1K�

þ
XV

j¼0

Xf

g0¼1

Xf

g¼1

XmðgÞ�1

h1¼0

XmðgÞ�h1�1

h2¼0

Xmðg0Þ�1

h01¼0

Xmðg0 Þ�h1�1

h02¼0

xðj; g0; gÞc0ðgÞ

� ðZþs�mðgÞþh1þh2�jðn�mðg0Þ þ h01 þ h02 � j; g0;h01;h
0
2ÞK

� ðA1Þ

With the following boundary conditions:

Zs ¼ 1 for s < mðgÞ � h1 � h2 ðA2Þ

Here c0(g) is the free concentration of the protein of type g, and
the macroscopic binding constant K� ¼ Kðn; g;h1 � h2Þ for the pro-
tein whose first contact with DNA starts at position n is defined by
Eq. 1 in the main text with the following boundary conditions:

Kðn; g; h1;h2Þ ¼ 0 for n < 1 or s > N ðA3Þ
Please cite this article in press as: V.B. Teif et al., Methods (2013), http://dx.do
A given configuration with DNA positions [n, s] covered by a
bound protein of type g with unbound h1 and h2 bp from its left
and right ends, respectively, is described by the following partial
partition function:

Zþs ðn; g;h1;h2Þ ¼ c0ðgÞZs�mðgÞþh1þhþ2�V�1K� þ
XV

j¼0

Xf

g0¼1

XmðgÞ0�1

h01¼0

XmðgÞ0�h01�1

h02¼0

� Zþs�mðgÞþh1þh2�jðn�mðg0Þ þ h01 þ h02 � j; g0;h01; h
0
2

h i

�wðj; g0; gÞc0ðgÞK� ðA4Þ

Eq. A4 is based on the recurrent calculation of the partition
function in the forward direction (left to right in Fig. 3B). Analo-
gously, we can calculate the partial partition function backwards
(right to left from N to n in Fig. 3C) for the situation when the pro-
tein of type g with unwrapped h1 and h2 bp covers region [n, s] on
the DNA. This partial partition function is denoted as
Z�n ðn; g;h1;h2Þ. Then the product of partial partition functions
Zþs ðn; g;h1;h2Þ � Z�n ðn; g;h1;h2Þ gives the sum of all states of the sys-
tem where the protein of type g with unwrapped h1 and h2 bp cov-
ers region [n, s] on the DNA. This expression has to be divided by
coðgÞ � Kðn; g;h1;h2Þ because the forward and reverse partition
functions take into account our protein of interest twice. Finally,
in order to find the probability of TF binding event we have to di-
vide this expression by the total partition function Zn of the system.
Then the probability that the protein of type g with unwrapped h1

and h2 bp starts at position n is given by the following expression:

Pðn; g;h1;h2Þ ¼
Zþs ðn; g;h1; h2Þ � Z�n ðn; g; h1;h2Þ

ZN � c0ðgÞ � Kðn; g;h1;h2Þ
ðA5Þ
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