Bioinformatics Practical

BS220 Medical Genetics

Vlad Teif (vteif@essex.ac.uk)

Objectives

Understand DNA sequence alignment and its applications for medical problems. Learn how to use online tools to map a DNA sequence to the human genome and to multiple bacterial genomes using BLAST. Familiarise yourself with the database Online Mendelian Inheritance in Man (OMIM).

Story plot

A patient is in a hospital in a critical condition. Medical doctors have extracted some pieces of DNA or RNA from patient's blood and have to decide, as a matter of life or death, what's going on with the patient. The patient is being treated for a genetic disease, cystic fibrosis, but the current symptoms cannot be simply explained by this diagnosis. In this situation, in addition to classic tests, a new test has been performed: all nucleic acids extracted from patient's blood plasma have been sequenced. You are provided with two sequences resulting from this experiment: sequence A and sequence B. You have two hours to analyse these and decide what these sequences mean for the patient's medical condition and how to save life.ⁱ

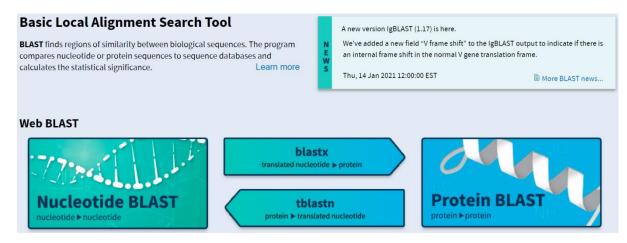
Introduction

The **Story Plot** and the **Plan of the Practical** above contain several important terms, and before we proceed let's make sure you understand their meaning:

Genetic disease is a genetic problem caused by one or more abnormalities formed in the genome. Some of them are caused by *Mendelian inheritance*.

Cell-free DNA consists of degraded DNA fragments released to the blood plasma (the liquid part of blood that does not include blood cells). cfDNA pieces can come from apoptotic (dead) cells from all parts of the body. Human blood plasma normally should not contain any foreign DNA, only the DNA from the dead cells of this organism. E.g. if bacterial or viral DNA or RNA are present in blood, it may indicate infection and even sepsis.

Sequencing is the experimental procedure of determining the nucleotide sequence in DNA.


Alignment (mapping) is the process where you align (map) a given DNA sequence to some other DNA sequence. For example, you could compare a single short sequence to the long sequence of the human genome (~3 billion nucleotides), and ask a question, whether the human genome contains regions that have the same (or similar) sequences as our sequence of interest. If such region(s) exist in the human genome, then you can ask where these regions are located, and which of these regions better matches to our sequence of interest.

Task 1. Map sequence A to the human genome using BLAST

Here is "sequence A":

AGAACTGGAGCCTTCAGAGGGTAAAATTAAGCACAGTGGAAGAATTTCATTCTGTTCTCAGTTTTCCTGGA TTATGCCTGGCACCATTAAAGAAAATATCATCTTTGGTGTTTCCTATGATGAATATAGATACAGAAGCGTC AAGCATGCCAACTAGAAGAGGTAAGAAACTATGTGAAAAACTTTTTGATTATGCATATGAAC

1.1. Let's go to the BLAST web site: https://blast.ncbi.nlm.nih.gov

1.2. Select "Nucleotide BLAST":

NIH	U.S. National Library of Medicine NCBI National Center for Biotechnology Information						
BLA	BLAST [®] » blastn suite						
	Standard Nucleotide BLAST						
blastn	lastp blastx tblastn tblastx						
Ent	R Query Sequence BLASTN programs search nucleotide databases using a nucleotide query. more.						
Enter	ccession number(s), gi(s), or FASTA sequence(s) 😣 <u>Clear</u> Query subrange 😣						
	From						
	То						
Or, up	Dad file Choose File No file chosen						
Job T	e						
	Enter a descriptive title for your BLAST search 😡						
🗆 Ali	n two or more sequences 😡						
Ch	ose Search Set						
Datab	● Standard databases (nr etc.): ○rRNA/ITS databases ○Genomic + transcript databases						
	Nucleotide collection (nr/nt)						
Orgar Option	Enter annualize a second a la consulation a sull be assumed ad a successful a successful a						

1.3. Paste "Sequence A" in the form;

I the menu "Database" select "Genomic + transcript databases";

In the drop-down menu under "Database" select "Human genomic plus transcript (G+T)":

Enter Query S	equence	DLAS IN programs searc	ch nucleolide databases using a nucl
	umber(s), gi(s), or FASTA sequence(s) 🥹	Clea	r Query subrange 😡
AGAACTGGAGCCTTCAGAG	GGGTAAAAATTAAGCACAGTGGAAGAATTTCATTCTGTTCTCAGTT AATATCATTCTTTGGTGTTTCCTATGATGAATATAGATACAGAAGC CTATGTGAAAACTTTTTGATTATGCATATGAAC	TTCCTGGATTATG	From To
Or, upload file Job Title Align two or mo	Choose File No file chosen Enter a descriptive title for your BLAST search	9 1 9	
Choose Searc	h Set		
Database	Standard databases (nr etc.): OrRNA		omic + transcript databases
Exclude Optional	Models (XM/XP) Uncultured/environ	nmental sample sequen	ces
Limit to Optional Entrez Query Optional	Sequences from type material Enter an Entrez query to limit search	Y	ou Tube Create custom database
Program Selec	ction		
Optimize for	Highly similar sequences (megablast)		

1.4. In the section "Program selection", select "Highly similar sequences (megablast)":

Choose Search	Set				
Database	⊖ Standard databases (nr etc.): ○ rRNA/ITS databases ● Genomic + transcript databases				
	♦ Human genomic plus transcript (Human G+T) ▼ 🥹				
Exclude Optional	□ Models (XM/XP) □ Uncultured/environmental sample sequences				
Limit to	Sequences from type material				
Optional Entrez Query	You Tube Create custom database				
Optional	Enter an Entrez guery to limit search ()				
Program Selec	tion				
Optimize for					
optimize for	Highly similar sequences (megablast)				
	 More dissimilar sequences (discontiguous megablast) 				
	Somewhat similar sequences (blastn)				
Choose a BLAST algorithm 😡					
BLAST	Search database Human G+T using Megablast (Optimize for highly similar sequences) Show results in a new window				

1.5. Now all parameters are selected, and we can press the "BLAST" button to start analysis:

NIH	U.S. National Library of Medicine		31 National Center for Biotechnology Informa	ation	
BLAST [®] » blastn suite » RID-1PDNXS4H014					
[E o rm	atting optional		Form	nat Request Status	
[<u>rorm</u>	atting options]				
Job	Title: Nucleotide Sequence				
F	Request ID			1PDNXS4H014	
\$	Status			Searching	
\$	Submitted at			Sun Jan 12 10:09:49 2020	

This page will be automatically updated in 2 seconds

Current time

Time since submission

Sun Jan 12 10:09:51 2020

00:00:02

1.6. When the program finishes the analysis you will see the header like this:

< Edit Search	Save Search Search Summary 🗙				
Job Title	Nucleotide Sequence				
RID	<u>1PDNXS4H014</u> Search expires on 01-13 22:09 pm <u>Download All</u> ~				
Program	BLASTN ? <u>Citation</u> ~				
Database	Human G+T (2 databases) <u>See details</u> ✓				
Query ID	lcl Query_42429				
Description	None				
Molecule type	dna				
Query Length	203				
Other reports	Distance tree of results MSA viewer ?				
Descriptions	Graphic Summary Alignments Taxonomy				

BLAST[°] » blastn suite » results for RID-1PDNXS4H014

Scroll down to the most important part of this page:

Program	BLASTN ? <u>Citation</u>	•		Organism only top 20 will appear	
Database	Human G+T (2 database	s) <u>See details</u> ✓		Type common name, binomial, taxid or group name	
Query ID	lcl Query_42429			+ Add organism	
Description	None			Percent Identity E value Query Coverage	
Molecule type	dna			to to to	
Query Length	203				
Other reports	Distance tree of results	MSA viewer 🔞		Filter	Reset
Descriptions	Graphic Summary	Alignments	Taxonomy		
Sequences	producing significant	alignments		Download Y Manage Columns Y Show 100	♥ 0
🗹 select all	2 sequences selected			GenBank Graphics Distance tree	of results
		De	scription	MaxTotalQueryEPer.ScoreScoreCoverValueIdent	ccession
				Transcripts	
Homo sapi	ens cystic fibrosis transmembra	ane conductance regulato	or (CFTR), mRNA	283 283 80% 3e-74 97.60% NM_	000492.3

In this case, the DNA sequence A that we submitted has mapped to the human gene *CFTR* (cystic fibrosis transmembrane conductance regulator). The E-value is 3e-74 – the meaning of this parameter can be roughly understood as the probability to obtain the same result by chance (that is, if we would randomly construct a DNA sequence of 208 nucleotides, the probability that it would map to the same gene with the same similarity would be 3e-74). Thus, the chance that this result would be obtained by a random coincidence is very small, or in other words, the statistical significance of this result is very high.

2. If sequence A mapped to a known human gene, check in the BLAST output whether mutations are present in this gene.

Let's click on the line "Homo sapience cystic fibrosis transmembrane conductance (CFTR), mRNA":

Descriptions	5	Graphic Summary	Alignments	Taxonomy				
Alignment vi	ew F	Pairwise		CDS	feature 😮			
2 sequences s	2 sequences selected 😮							
L Down	<u>ıload</u> ∽	GenBank Graph	ics					
			ansmembrane con 6132 Number of Matc	_	ator (CFTR)	, mRNA		
Range 1	l: 1551	to 1717 GenBank	Braphics		▼ <u>Next M</u>	atch 🔺 Pr		
Range 1 Score 283 bits		Expect I	dentities .63/167(98%)	Gaps 4/167(2%)	▼ <u>Next M</u> Strand Plus/Plus	atch 🔺 Pr		
Score 283 bits		Expect I 3e-74 1	dentities .63/167(98%)		Strand	atch <u>Pr</u>		
Score 283 bits Query	s(153)	Expect I 3e-74 1 AGAACTGGAGCCTTCAG	dentities .63/167(98%)	4/167(2%) GTGGAAGAATTTCAT	Strand			
Score 283 bits Query Sbjct	s(153) 1	Expect I 3e-74 1 AGAACTGGAGCCTTCAG IIIIIIIIIIIIIIIII AGAACTGGAGCCTTCAG	dentities .63/167(98%) AGGGTAAAATTAAGCACA 	4/167(2%) GTGGAAGAATTTCAT	Strand Plus/Plus TCTGTTCTCA	60		
Score 283 bits Query Sbjct Query	s(153) 1 1551	Expect I 3e-74 1 AGAACTGGAGCCTTCAG IIIIIIIIIIIIIIIIIII AGAACTGGAGCCTTCAG GTTTTCCTGGATTATGC IIIIIIIIIIIIIIIIIIIIIIII	dentities .63/167(98%) AGGGTAAAATTAAGCACA AGGGTAAAATTAAGCACA	4/167(2%) GTGGAAGAATTTCAT GTGGAAGAATTTCAT ATATCATCTTTGGTG 	Strand Plus/Plus TCTGTTCTCA TCTGTTCTCA	60 1610		
Score 283 bits Query Sbjct Query Sbjct	s(153) 1 1551 61	Expect I 3e-74 1 AGAACTGGAGCCTTCAG IIIIIIIIIIIIIIIIIII AGAACTGGAGCCTTCAG GTTTTCCTGGATTATGC IIIIIIIIIIIIIIIIIIIIIIII	dentities .63/167(98%) AGGGTAAAATTAAGCACA AGGGTAAAATTAAGCACA CTGGCACCATTAAAGAAA 	4/167(2%) GTGGAAGAATTTCAT GTGGAAGAATTTCAT ATATCATCTTTGGTG 	Strand Plus/Plus TCTGTTCTCA TCTGTTCTCA	60 1610 120		

This graph shows the alignment of "Sequence A" to the *CFTR* gene in the human genome. As you can see from this graph, only four nucleotides do not match ("Sequence A" has a deletion of these four nucleotides which appear in the reference human genome but do not appear in "Sequence A"). The overall identity between these two sequences is 98%, which is a very good match (highly unlikely to come up with such sequence randomly by chance). The four nucleotides which are missing represent a mutation (deletion).

- 3. Check how this DNA sequence translates into amino-acid sequence using ExPASy:
- 3.1. Go to the ExPASy web site: <u>https://web.expasy.org/translate/</u>
- 3.2. Paste the DNA sequence A in the form:

Translate is a tool which allows the translation of a nucleotide (DNA/RNA) sequence to a protein sequence.
DNA or RNA sequence
AGAACTGGAGCCTTCAGAGGGTAAAATTAAGCACAGTGGAAGAATTTCATTCTGTTCTCAGTTTTCCTGGATTA TGCCTGGCACCATTAAAGAAAATATCATCTTTGGTGTTTCCTATGATGAATATAGATACAGAAGCGTCAAGCAT GCCAACTAGAAGAGGTAAGAAACTATGTGAAAACTTTTTGATTATGCATATGAAC
Output format
 Verbose: Met, Stop, spaces between residues Compact: M, -, no spaces Includes nucleotide sequence Includes nucleotide sequence, no spaces
DNA strands
✓ forward ✓ reverse
Genetic codes - See NCBI's genetic codes
Standard •
reset TRANSLATE!

3.3. Get resulting amino-acid sequences for different reading frames:

Results of translation	
 Open reading frames are highlighted in red Select your initiator on one of the following frames to retrieve your amino acid sequence 	Download all the translated frames
5'3' Frame 1 RTGAFRG-N-AQWKNFILFSVFLDYAWHH-RKYHLWCFLI-IQKRQACQLEEVRNYVKTF-LCI-	
5'3' Frame 2 ELEPSEGKIKHSGRISFCSQFSWIMPGTIKENIIFGVSYDEYRYRSVKHAN-KR-ETM-KLFDYAYE	
5'3' Frame 3 NWSLQRVKLSTVEEFHSVLSFPGLCLAPLKKISSLVFPMMNIDTEASSMPTRRGKKLCENFLIMHMN)	
3'5' Frame 1 VHMHNQKVFT-FLTSSSWHA-RFCIYIHHRKHQR-YFL-WCQA-SRKTENRMKFFHCA-FYPLKAPV	
3'5' Frame 2 FICIIKKFSHSFLPLLVG <mark>MLDASVSIFIIGNTKDDIFFNGARHNPGKLRTE-N</mark> SSTVLNFTL-RLQF	
3'5' Frame 3 SYA-SKSFHIVSYLF-LACLTLLYLYSS-ETPKMIFSLMVPGIIQEN-EQNEILPLCLILPSEGSSS	

3.4. Now let's compare with the wild-type sequence in the reference DNA genome. You can get this sequence from the BLAST alignment output as shown in the figure below:

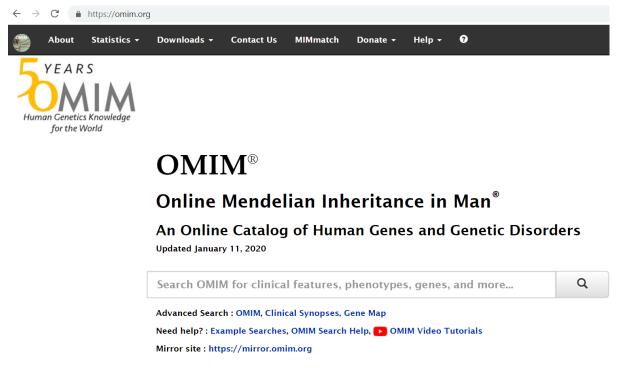
Sequence ID: <u>NM 000492.3</u> Length: 6132 Number of Matches: 1						
Range 1: 1551 to 1717 GenBank Graphics Vext Match A Pre						
Score 283 bit	s(153)	Expect 3e-74	Identities 163/167(98%)	Gaps 4/167(2%)	Strand Plus/Plus	
Query	1	AGAACTGGAGCCTTC	AGAGGGTAAAATTAAGCACAG	GTGGAAGAATTTCATTC	TGTTCTCA 60	
Sbjct	1551	AGAACTGGAGCCTTC	AGAGGGTAAAATTAAGCACAG	stggaagaatttcattc	tgttctca 1610	
Query	61	GTTTTCCTGGATTAT	GCCTGGCACCATTAAAGAAAA	ATATCATCTTTGGTGTT	TCCTATGA 120	
Sbjct	1611	GTTTTCCTGGATTAT	GCCTGGCACCATTAAAGAAA	ATATCATCTTTGGTGTT	TCCTATGA 1670	
Query	121	TGAATATAGATACAG	AAGCGTCAAGCATGCCA	ACTAGAAGAGG 163		
Sbjct	1671	tgaatatagatacag	AAGCGTCATCAAAGCATGCCA	ACTAGAAGAGG 171	7	

Homo sapiens cystic fibrosis transmembrane conductance regulator (CFTR), mRNA Sequence ID: NM_000492.3_Length: 6132_Number of Matches: 1

3.5. Copy the wild-type DNA sequence (it is shown in the red rectangle in the figure below):

Homo sapiens cystic fibrosis transmembrane conductance regulator (CFTR), mRNA Sequence ID: <u>NM 000492.3</u> Length: 6132 Number of Matches: 1

Score		Expect	Identities	Gaps	Strand
283 bits(153)		3e-74	3e-74 163/167(98%)		Plus/Plus
Query	1	AGAACTGGAGCCTTC	AGAGGGTAAAATTAAGCAC	AGTGGAAGAATTTCATT	ГСТGTTCTCA 60
Sbjct	1551	AGAACTGGAGCCTTC	CAGAGGGTAAAATTAAGCAC	AGTGGAAGAATTTCATT	ICTGTTCTCA 1610
Query	61	GTTTTCCTGGATTA	GCCTGGCACCATTAAAGAA		TTTCCTATGA 120
Sbjct	1611	ĠŦŦŦŦĊĊŦĠĠĂŦŦĂŦ	ĠĊĊŦĠĠĊĂĊĊĂŦŦĂĂĂĠĂĂ	AATATCATCTTTGGTG1	TTTĊĊŦĂŦĠĂ 1670
Query	121	TGAATATAGATACAG	GAAGCGTCAAGCATGC	CAACTAGAAGAGG 16	53
Sbjct	1671	ŤĠĂĂŤĂŤĂĠĂŤĂĊĂĠ	<u>ĠĂĂĠĊĠŤĊATCAĂĂĠĊĂŤĠĊ</u>	ĊĂĂĊŦĂĠĂĂĠĂĠĠ 17	717


3.6. Paste the wild-type DNA sequence to ExPASy (<u>https://web.expasy.org/translate/</u>) and translate it to the amino-acid sequence for all possible reading frames:

Results of translation	
 Open reading frames are highlighted in red Select your initiator on one of the following frames to retrieve your amino acid sequence 	Download all the translated frames
5'3' Frame 1 RTGAFRG-N-AQWKNFILFSVFLDYAWHH-RKYHLWCFLI-IQKRHQSMPTRR	
5'3' Frame 2 ELEPSEGKIKHSGRISFCSQFSWIMPGTIKENIIFGVSYDEYRYRSVIKACQLEE	
5'3' Frame 3 NWSLQRVKLSTVEEFHSVLSFPGLCLAPLKKISSLVFPMMNIDTEASSKHAN-KR	
3'5' Frame 1 PLLVGMLRFCIYIHHRKHQR-YFL-WCQA-SRKTENRMKFFHCA-FYPLKAPV	
3'5' Frame 2 LF-LACFDDASVSIFIIGNTKDDIFFNGARHNPGKLRTE-NSSTVLNFTL-RLQF	
3'5' Frame 3 ssswhalmtllylyss-etpkmifslmvpgiigen-equeilplclilpsegsss	

3.7. Discuss: what amino-acid changes can be caused by this mutation?

4. Check in the OMIM database, which Mendelian disease is associated with this mutation.

4.1. Let's go to the OMIM database: https://omim.org

4.2. Let's look for the *CFTR* gene in the OMIM database:

*602421 Table of Contents	e of Contents * 602421 CVSTIC EIBROSIS TRANSMEMBRANE CONDUCTANCE								
Title									
Gene-Phenotype Relationships			ONDUCT	ANCE		•	DNA		
Text	KEGU	REGULATOR; <mark>CFTR</mark>							
Description	Alternative	titles: symbols				•	Gene Info		
Cloning and Expression			Clinical Resources						
Gene Structure		,							
Mapping	HCNC	C Approved Gene Symbol: CFTR			Variation				
Gene Function	HGNC A		1000 Genome						
Biochemical Features	Cytogen	64 (from NCBI)	ClinVar						
Molecular Genetics			ExAC						
Animal Model History							gnomAD GWAS Catalog GWAS Central		
Allelic Variants	Location	Phenotype	Phenotype MIM number	Inheritance	Phenotype mapping key		HGMD HGVS		
Table View	7q31.2	(Bronchiectasis with or without elevated sweat chloride 1, modifier of)	211400	AD	3		Locus Specific DBs		
See Also		{Hypertrypsinemia, neonatal}			3	NHLBI EVS PharmGKB			
References		{Pancreatitis, hereditary}	167800	AD.	3		r nur niorda		
Contributors		Congenital bilateral absence of vas deferens	277180	AR	3		Animal Models		
	Cystic fibrosis 219700 AR 3								

4.3. Work independently with this page of the OMIM database to read about possible phenotypes associated with CFTR gene and associated medical information.

Discuss: is cystic fibrosis a recessive or dominant disease? If this patient has a piece of DNA with mutation in CFTR, does it mean she/he has cystic fibrosis? What are its molecular mechanisms?

5*. Try to map sequence B to the human genome using BLAST

Repeat steps 1.1-1.6 to map "Sequence B" to the human genome.

Here is "sequence B":

Discuss: Did you manage to map "Sequence B" to the human genome? Why?

6. Try to map sequence B to the coronavirus genome using BLAST

Repeat steps 1.1-1.6, but select "Betacoronovirus" as the database:

Choose Search	n Set
Database	OStandard databases (nr etc.): OrRNA/ITS databases OGenomic + transcript databases Betacoronavirus
	♦ Betacoronavirus Genbank ✔ 🥹

Discuss: Did you manage to map "Sequence B" to the coronovirus genome? Why?

BTW, it's possible to say that it's not RNA from virus even without this analysis! Why?

7. Map "Sequence B" to bacterial and fungal genomes

7.1. Open BLAST (<u>https://blast.ncbi.nlm.nih.gov</u>) and in the section "Database" select "rRNA/ITS databases". In the drop-down menu select "16S ribosomal RNA sequences (bacteria and fungi)ⁱⁱ:

blastn <u>blastp</u> <u>blas</u>	tx <u>tblastn</u>	tblastx								
Enter Query S	equence		BLASTN programs search nucleotide databases using a nucl							
		(c) or EA	ASTA sequence(s) 😡 <u>Clear</u> Query subrange 😡							
			ITACATGCAAGTAGAACGCTGAAGGAGGAG							
CTTGCTTCTCTGGATGAGT	TGCGAACGGGTGAGTAACGCGTAGGTAACCTGCCTGGTAGCGGGGGATAAC									
ATCACTACCAGATGGACCT	GCGTTGTATTAGCTAGTTGGTGGGGTAACGGCTCACCAAGGCGACGATACA									
TAGCCGACCTGAGAGGGTG	ATCGGCCACACT	GGACTGAGA								
Or, upload file	Choose	File No	file chosen 😡							
Job Title										
	Enter a de	scriptive tit	tle for your BLAST search 😡							
Align two or mo		1.1								
Choose Searc	h Set									
Database	Standa	rd databa	ises (nr etc.): ●rRNA/ITS databases							
	16S ribo	somal RN	IA sequences (Bacteria and Archaea) 🔹 🛛 🕡							
Organism										
Optional		·	me or idcompletions will be suggested exclude exclude exclude e							
Evolutio			non name, binomial, or tax id. Only 20 top taxa will be shown 😡							
Exclude Optional	Models	s (XM/XP)	Uncultured/environmental sample sequences							
Limit to	Seque	nces from	n type material							
Optional Entrez Query			You Tube Create custom database							
Optional	Enter an E	intrez quer	y to limit search 😡							
			-							
Program Selec	tion									
Optimize for	 Highly 	similar se	equences (megablast)							

Click button "BLAST":

BLAST Search database 16S ribo	somal RNA sequences (Bacteria and Archaea) using Megablast (Optimize for highly similar sequences) w
Algorithm parameters	Note: Parameter values that differ from the default are highlighted in yellow and marked with • sign

7.2. After the program finishes calculations, you will get the following results:

Program	BLASTN 🚱 Citation 🗸	Organism only top 20 will appear						
Database	rRNA_typestrains/prokaryotic_16S_ribosomal_RNA	Type common name, binomial, taxid or group name						
	See details 🗸	+ Add organism						
Query ID	lcl Query_7965	Percent Identity E value Query Coverage						
Description	None							
Molecule type	dna	to to to to						
Query Length	350	Filter Reset						
Other reports	Distance tree of results MSA viewer 🔞							
Descriptions	Graphic Summary Alignments Taxonomy							
	and a lange to the theory of the							

Seq	uences producing significant alignments Dow	vnload 🗠	Mar	age C	olumn	s ~	Show	100 🗸 🕜
~ :	select all 100 sequences selected		<u>Ge</u>	nBank	<u>Gra</u>	<u>phics</u>	<u>Distance</u>	tree of results
	Description	:			Query Cover	E value	Per. Ident	Accession
✓	Streptococcus pneumoniae strain ATCC 33400 16S ribosomal RNA, partial sequence		643	643	100%	0.0	100.00%	NR_028665.1
✓	Streptococcus mitis strain NS51 16S ribosomal RNA, partial sequence		625	625	99%	6e-179	98.85%	NR_028664.1
✓	Streptococcus pneumoniae strain ATCC 33400 16S ribosomal RNA, partial sequence		612	612	95%	4e-175	100.00%	NR_117496.1

7.3. Click on the top match to see how "Sequence B" aligned with it:

Streptococcus pneumoniae strain ATCC 33400 16S ribosomal RNA, partial sequence

Sequence ID: <u>NR 028665.1</u> Length: 1515 Number of Matches: 1

									TTO/IL	
Score		Ex	pect	Identities			Gaps		Strand	
643 bit	ts(348	s) 0.	0	350/350	(100%)		0/350(0	%)	Plus/Plu	IS
Query	1	ATTTGATCC	I GGCTCA	GGACGAAC				GCAAGTAG	AACGCT	60
bjct	1	ATTTGATCC	rggctca	GGACGAAC	GCTGGCG	GCGTGCCT	TAATACAT	GCAAGTAG	AACGCT	60
uery	61	GAAGGAGGA		TCTCTGGA	TGAGTTG		GTGAGTAA	CGCGTAGG		120
bjct	61	GAAGGAGGA	SCTTGCT	TCTCTGGA	TGAGTTG	CGAACGGG	GTGAGTAA	CGCGTAGG	TAACCT	120
Query	121	GCCTGGTAG	CGGGGGGA		GGAAACG	ATAGCTA		TAAGAGTG	GATGTT	180
Sbjct	121	GCCTGGTAG	CGGGGGGA	taactatt	GGAAACG	ATAGCTAA	TACCGCA	TAAGAGTG	GATGTT	180
)uery	181	GCATGACAT	TGCTTA	AAAGGTGC					GTATTA	240
bjct	181	GCATGACAT	TTGCTTA	AAAGGTGC	ACTTGCA	ТСАСТАСС	CAGATGGA	CCTGCGTT	GTATTA	240
Query	241	GCTAGTTGG	TGGGGTA	ACGGCTCA		GACGATAC		ACCTGAGA	GGGTGA	300
Sbjct	241	GCTAGTTGG	TGGGGTA	ACGGCTCA	CCAAGGC	GACGATAC	CATAGCCG	ACCTGAGA	GGGTGA	300
Query	301	TCGGCCACA		TGAGACAC	GKCCCAG	ΑCTCCTAC	GGGAGGC	AGCA 35	0	
bjct	301	TCGGCCACA	CTGGGAC	TGAGACAC	GKCCCAG	ACTCCTAC	CGGGAGGC	AGCA 35	0	

Range 1: 1 to 350 GenBank Graphics

▼ <u>Next Match</u> ▲ <u>Pr</u>e

8. As you can see from this output, the piece of DNA extracted from the blood of the patient belongs to Streptococcus pneumoniae strain ATCC 33400

8.1. Discuss: How can it be that the cell-free DNA fraction in the blood plasma contains this piece of DNA that maps to a pathogenic bacterium?

8.2. Discuss: What would you advise to medical doctors?

ⁱ In a real situation sequencing of cell-free DNA would return millions of short pieces of DNA and we would need to do more advanced analysis, but for the purpose of this practical for simplicity only two DNA sequences were reported. For example, this could be the result of targeted amplification of DNA sequences of interest.

ⁱⁱ rRNA genes are extremely conserved across many bacterial and fungal species, therefore rRNA is frequently used in cross-species mapping. While rRNA is very conserved, there are differences between different species, so if a given sequence of rRNA is compared to rRNA from each known species of bacteria and fungi it is possible to identify the best match. Thus, we can uniquely identify the bacteria or fungi to which a given piece of DNA belongs.